- 1. a) Cooling curve
 - c) B-C
 - d) The Kinetic energy of molecules decreases as the temperature drops.

The molecules also move close together.

2. a) No of mol of NaOH = MV

$$=0.1x^{25}/_{1000}=0.0025$$

b)
$$H_2X_{(aq)} + 2NaOH_{(aq)} \longrightarrow Na_2X_{(aq)} + 2H_2O_{(l)}$$

 $Molarity = No \ of \ mol = 0.00125 = 0.06684492$
 $Vol(ltr) \qquad 0.0187$

- 3. a) solid $G Pb(NO_3)_2$
 - b) $PbO_{(s)} + 2H(NO_3)_{2(aq)} + H_2O_{(l)}$
 - c) Tetrahydroxo lead(II)ion
- 4. $HCl_{(g)}$ dissociate in water to form ions hence conduct electricity while in non polar solvent (methylbenzene) remain in molecular form which are covalent.
- 5. a) P Sublimation

Q - Condensation

- b) Q is exothermic because it involves bond formation.
- 6. a) Refers to existence of an element in two or more structural forms in same physical state.
 - b) Graphite and diamond
- c) Used to remove coloured impurities from sugar.
- 7. a) under the same condition of temperature and pressure the rate of diffusion of gas is inversely proportional to the square root of its density.

b)
$$\underline{\text{TB}} = \sqrt{\text{MB}} \ \underline{\text{TCO}_2} = \sqrt{\text{MCO}_2}$$

 $\underline{\text{TA}} \ \sqrt{\text{MA}} \ \underline{\text{TO}_3} \ \sqrt{\text{MO}_3}$

$$TCO_2/96 = \sqrt{44/48} = 91.91 \text{ sec}$$

- 8. a) copper pyrites
 - Copper glance
 - Malachite
 - Azurite
 - Cuprite NB/ any two names or chemical formulas
- b) To concentrate the copper in the ore
- c) Brass is used for to make domestic utensils, condenser tubes, sheets and catridges.

- 10. a) white/yellow phosphorus
 - b) Does not react with water
 - reacts spontaneously with oxygen to form a mixture of oxide.

c)
$$-4P_{(s)} + 3O_{2(g)} \longrightarrow 2P_2O_{3(s)}$$
 $-4P_{(s)} + 5O_{2(g)} \longrightarrow 2P_2O_{5(s)}$

H H H KMno₄
HO- C'₁ - C'₂ - OH
H H H

- b) i) Alkyne
 - ii) Ester
- 12 a) K
 - b) J
- 13. (i) Soapy detergent
 - (ii) Sodium Chloride
 - (iii) To precipitate soap
- 14. a) The time taken for any amount radioactive nuclides to decay to half the initial amount or number

b) No of
$$t_{1/2} = {}^{100}/_{25} = 4$$
 Amount $= 20x2^4 = 320gm$

15. Residue T – Magnesium nitride

$$\begin{array}{ll} Gas\ D-Ammonia \\ b)\ Mg_3N_{2(s)}+H_2O_{(l)} \longrightarrow & 3Mg(OH)_{2(aq)}+2NH_{3(g)} \end{array}$$

16. a) i)
$$SO^{2-} \triangleleft \square I$$

ii) $Zn^{2+} \square I$
b) $Pb^{2+}_{(aq)} + SO^{2-}_{4(aq)} \square PbSO_{4(s)} \square I$

17. Rmm of CO₂ = 12 + 2 × 16 = 44
$$\Box \frac{1}{2}$$

Rmm of NO₂ = 14 + 2 × 16 = 46 $\Box \frac{1}{2}$ $\Box I$
75cm³ of CO₂ takes $\frac{75 \times 15}{50}$ = 22.5seconds

$$\frac{TxSO_2}{TCO_2} = \sqrt{\frac{M_{NO_2}}{M_{CO_2}}}$$

$$TCO_2 \qquad \bigvee M_{CO_2}$$

$$TNO_2 = 22.5\sqrt{\frac{46}{44}}$$

= 23.006seconds

 $\Box \frac{1}{2}$

18. a) i) Polyphenylenthene /polystyrene

Phenylethene $\Box \frac{1}{2}$

b) It pollutes the environment $\Box I$ / Non-biodgradable.

19.
$$Cu^{2+} + 2e^{-} \rightarrow Cu_{(S)}$$
 $\Box I$

1mole 2mol 1mol

63.5 $g = 2 \times 96500$

1.48 $g = ?$

$$= \left(\frac{1.48 \times 2 \times 96500}{63.5}\right)C$$
 $I = \frac{4498.2677}{9000} \frac{63.5}{98.268} \Box \frac{1}{2}$

= 0.499 A

= 0.5 A
 $(\frac{1}{4} \times 16) + (\frac{3}{4} \times 18)$

= 4 + 13.5 = 17.5

- 20. a) Magnesium would react with air in the combustion tube since nitrogen gas has not yet been produced. *1 mark*
 - b) i) Nitrogen gas 1 mark ii) $3Mg_{(S)} + N_{2(g)} \rightarrow Mg_3N_{2(S)}$ 1 mark

21.

a) i) A yellow powder of sulphur was deposited $\Box I$ A white solid of magnesium oxide was formed. $\Box I$

ii)
$$2Mg_{(S)} + SO_{2(g)} \rightarrow 2MgO_{(S)} + S_{(S)}$$

22.

Enthalpy of reactants Enthalpy of products

$$(4 \times 388) + 163 + 496$$
 $-944 + 2(-463)$ = $-1870 \square I$

Enthalpy change = Enthalpy of reactant + enthalpy of product

$$= +341 \text{kJ} \ \Box 1$$

$$CaCO_{3(S)} + 2HCl_{(aq)} \rightarrow CaCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$$

23.
$$5.0g$$
 $2.5cm^3$ 25×1.0 Moles of HCl $= 1000$

$$I = \frac{4498.2677}{9000}$$
$$= 0.499A$$

$$= 0.025$$
 moles $= 0.5A$

Moles of CaCO₃ =
$$\frac{1}{2} \times 0.025 \square \frac{1}{2}$$

= 0.125 moles
0.125 moles = x

$$x = 0.0125 \times 100$$

$$= 1.25g$$

Mass of unreacted $CaCO_3 = 5.00 - 1.25$

$$= 3.75g \square \frac{1}{2}$$

- 24. i) Provides / form calcium oxide which removes impurities in form of slag $\Box I$
 - ii) Carbon (IV) oxide □½

Carbon / coke □½

iii) Lowering temperature

Makes it more delicate (any one for 1 mark)

25.

a)
$$C_{12}H_{22}O_{11(S)} \xrightarrow{H_2SO_{4(1)}} 12C_{(S)} + 11H_2O_{(l)}$$

b) What name is given to the type of reaction above?

dehydration $\Box 1$

c)
$$2 + x - 6 = 0 \square \frac{1}{2}$$

$$x = +4 \ \Box \frac{1}{2}$$

$$Br_{2(I)} + 2I -_{(S)} \rightarrow 2Br^{-}_{(aq)} + I_{2(S)}$$

26. a)

b)
$$Emf = E_{red} - E_{ox}$$

$$= 1.09 - 054 \square \frac{1}{2}$$

$$= +0.45V \square \frac{1}{2}$$

c) $Br_{2(1)}$

27.

$$C = H$$

$$\frac{85.7}{12}$$
 $\frac{14.3}{1}$ *Moles* 7.14 14.3

mole ratio
$$\frac{7.14}{7.14}$$
 $\frac{14.3}{7.14}$

E.F. =
$$CH_2 \square \frac{1}{2}$$

ii)
$$\frac{22.4 dm^3}{2.24 dm^3} \times 7 = 70g$$

$$n = \frac{70}{14}$$

$$=5$$

M.F.:
$$(CH_2)_5 = C_5H_{10}$$

28. Electroplating

Purification of metals

Extraction of metal any one for 1 mark

- 29. -Add excess Zinc powder to dilute nitric (v) acid solution
 - Filter and collect the filtrate
 - Dissolve the solid sodium carbonate in water, stir to form a solution
 - Add the filtrate into the sodium carbonate solution and shake
 - Filter to collect the white residue and dry it between filter paper as the zinc carbonate