NAME:	INDEX NO:	• • • • • • • • • • • • • • • • • • • •
SCHOOL:	SIGN:	•••••
DATE:		

232/1 PHYSICS Paper I Theory JULY/AUGUST-2016 Time: 2 Hours

KAKAMEGA SOUTH SUB-COUNTY JOINT EVALUATION TEST - 2016

Kenya Certificate of Secondary Examination (KCSE)

232/1 PHYSICS Paper I Theory

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Answer all the questions both in section A and B in the spaces provided below each question
- All workings must be clearly shown,
- Mathematical tables and silent electronic calculators may be used.
- Take : Acceleration due to gravity, g 10m/s^2 Density of water = Ig/cm^3

For examiner's use only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
Section A	1-13	25	
Section B	14	11	
	15	08	
	16	12	
	17	11	
	18	13	
	TOTAL	80	

This paper consists of 11 printed pages Check the Question paper to ensure that all pages are printed as indicated and no question are missing.

PHYSICS

SECTION A (25 MARKS)

Answer ALL the questions in this section in the spaces provided

(a) Draw a diagram to represent a scale of a micrometer screw gauge of thimble scale 50 divisions and reading 3.68mm

	(b)	Determine the actual reading if the micrometer screw gauge above has a zero error of		
		0.03mm.	(1mk)	
			• • • • •	
			•••	
			•••••	
			••••	
			• • • • • •	
2.	State	why braking systems use Liquid and not gases.	(lmk)	
			• • • • • • • • • • • • • • • • • • • •	
	•••••			
	•••••			

The figure 1 below shows the level of mercury and water in a beaker.

Fig 1

3.

	Expla	ain the difference in the sl	nape of the meniscus.		(1mk)
1. The	e figure	2 below shows a wooder	n sphere with a nail han	nmered into it at point H as sh	own below.
		Fig 2	B Nail	here Q	
	The s	enhere is rolled on a horiz	15	s to rest after sometime at poir	nt ∩
		the sphere after it comes		s to rest after sometime at poin	(1mk)
5.	A 50g			an angle of 45° to the horizon	tal.
	(a)	Calculate in ms ⁻² , the a	acceleration of the load	as it slides down.	(3mks)
	(b)	Calculate the distance i	t would move from res	t in 0.20s	(3mks)

6. What is the safe speed a motorist should drive at on a level bend of radius 96m if the co-efficient of friction between the road and the tyres is 0.36m? (3mks)

7. A roller coaster has a vertical loop of radius 12m. The cars hurtle round the loop at 14ms⁻² point in the loop does the passenger feel heaviest. (1mk)

8. Sketch on the axis provided below a velocity - time graph of a motion of a stone thrown vertically upward from the edge of a platform and eventually the stone lands without bouncing on the ground below the platform. (1mk)

9. The figure 4 below shows two light sheets of paper arranged as shown.

232/1

R as s	shown	(1mk)
_	ass stopper is weighed in air then immersed wholly in water and i	
	ned are 2.5N in air and 2.0N in water. Given that the density of v	_
Calcu	alate the density of the stopper.	(3mks)
expia	ain why it is safe to hold the other end of a burning match stick.	(1mk)
State	e two physical quantities that remain constant while pure ice is b	eing converted to water
State	e ewo prijatear quantities that remain constant white pure fee is o	(2mks)
State	any two characteristics of an ideal gas.	(2mks)
	SECTION B (55 MARKS) Answer all the questions in this section.	
A lead	d shot of mass 40g is tied to a string of length 70cm. It is swung	vertically at 5 revolutions
	econd.	volutions at a revolutions
(a)	Determine;	
(u)	(i) Periodic time,	(2mks)
	(i) I choule time,	(2IIIK3)
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

	(ii)	Angular velocity				(2mks)
	••••					
	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	(iii)	Linear velocity			•••••	(2mks)
	••••					
	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	······					
	(iv)	Maximum tension in the	e string.			
	•••••					
	••••					
(b)	The f	igure 5 below shows a con	tainer with	small holes	at the bottom in	which wet clothes
		been put. When the contain				
		he clothes dry faster. Explanator	ain how the	rotation of t	he container cau	ses the clothes to (2mks)
	dry fa	ister.				(ZIIIKS)
		Fig 5	Cont	ainer Wet	Holes	
15. A	certain sul	bstance contracts when he	ated at a ceri	tain tempera	ature and expand	s when cooled at
	same tem					5 (111011
	(i)	Name the substance				(lmk)
	•••••		•••••			
	•••••					•••••
	(ii)	State one disadvantage			• • • • • • • • • • • • • • • • • • • •	(lmk)
© Kakameg	a South Ac	ademic Committee	6	232/1	PHYSICS	TURN OVER

(b) The figure 6 below shows four brass pins pressed on a cooking stuck until they are flat on the wood. A white gummed paper was then stuck on the wood covering the pins. The stick was then passed over a Bunsen flame a few times.

It was	was observed that the paper got charred leaving four white spots. Explain this observation.					
	(1 mk)					
(c)	The figure 7 below shows an experiment carried out by form one student.					

(1)	The students dipped two iron rods of the same length but of different thick	cness
into a	beaker of hot water at the same time. What was the experiment about?	(1mk)
•••••		
(ii)	State and explain the observations made after about 10 minutes.	(2mks)
•••••		
		••••
(iii)	If the two rods were much longer, state and explain any difference from C	(ii)
	above that would be made in the observation.	(2mks)

16.	(a)	Explain why a gas exerts increased pressure when it is compressed into a small s	space.			
			(2mk)			
			• • • • • • • • • • • • • • • • • • • •			
	4)					
	(b)	State the law that relates the volume of a gas to the temperature of the gas.	(lmk)			
			• • • • • • • •			
			•••••			
	(c)	A balloon is filled with air to a volume of 200ml at a temperature of 293K. Dete	rmine			
	(0)	volume when the temperature rises to 353K at the same pressure.	mme			
		volume when the temperature rises to 35511 at the same pressure.				
	(d)	To verify Boyle's law a set-up consisting of a U-tube was made as shown in the figure 8				
		below. The tube contains mercury with air in the sealed end.				
		(i) Explain what is observed when more mercury is added.	(2mks)			
			•••••			
		(ii) Suppose a most and read to maintain the term continue of air constant in the	•••••			
		(ii) Suggest a method used to maintain the temperature of air constant in the experiment.	(lmk)			
		experiment.	(IIIK)			
	e)	(i) Explain why Boyle's law would not hold for gases such as methane,	(lmk)			

		(ii)	Sketch the graph of pressure against volume for an ideal gas.	(2mks)
17.	State	the Arc	chimedes's principle.	(1mk)
		•••••		•••••
		•••••		•••••
		•••••		
	(b)	You a	are provided with the following apparatus;	
		•	A spring balance	
		•	A small piece of metal	
		•	Eureka can	
		•	A beam balance	
		•	A string	
		•	A beaker	
		•	A retort stand	

immersed body. (7mks)

With the aid of a well labeled diagram, describe an experiment you would perform in the

laboratory using the above apparatus to verify Archimedes's principle for a totally

Some water.

	(c)	A simple hydrometer has a cylindrical cross-sectional area of 2.0cm ² and weigher	d to have
		a total mass of 15g. What length of the hydrometer is immersed when it floats or	n water of
		density:1.0 g/cm ³ ?	(3mks)
			• • • • • • •
18.	(a)	What is specific latent heat of fusion?	(1mk)
	(b)	State two factors which affect freezing point of ice.	(2mks)
			••••
	(c)	Figure 9 below illustrates an experiment in which electrical energy is used to dete	ermine

(i)	Other than time, state other measurements that would be used to determine the				
	quantity of heat Q, absorbed by ice in unit time.	(2mks)			
•••••					
•••••		•••••			

specific latent heat of fusion.

(ii)	Complete the circuit to show connection of the essential circuit components.(3mks)
• • • • • • •	
(iii)	Describe how the experiment can be used to determine the latent heat of' fusion of
	ice. (3mks)
• • • • • • • • • • • • • • • • • • • •	
• • • • • • •	
•••••	
(d)	In a similar experiment, the following readings were obtained when the heater was
	switched on for 5 minutes
	Voltmeter reading = $6.0V$
	Ammeter reading = 1.25 A
	Temperature rise reading = 10° C
	If by the end of the experiment, 200g of water at 0°C was collected determine the
	latent heat of fusion of ice. (2mks)
• • • • • • •	
• • • • • • •	
• • • • • • •	
•••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • •	