NAME:		INDEX
NO:		
SCHOOL:		
	Candidate's Signature:	
	Date:	
232 / 1		
232 / 1 PHYSICS	Q	

232 / 1 PHYSICS PAPER 1 (Theory) JULY / AUGUST 2009 2 HOURS

JOINT INTERSCHOOLS EVALUATION TESTS JISET 2009

232 / 1 PHYSICS PAPER 1

INSTRUCTIONS TO CANDIDATES

- ❖ Write your name and index number in the spaces provided above
- ❖ Sign and write the date of the examination in the spaces provided
- ❖ This paper consists of two sections, A and B.
- ❖ Answer **all** the questions in the spaces provided
- ❖ All working must be clearly shown
- Non programmable silent electronic calculators and KNEC Mathematical tables **may** be used except where stated otherwise.

Take acceleration due to gravity g 10ms⁻²

For Examiners Use Only

Section	Question	Maximum Score	Candidates' Score
A	1 - 14	25	
В	15	10	
	16	11	
	17	09	
	18	13	
	19	12	
	Total Score	80	

SECTION A (25 MARKS)

Figure one below shows part of a micrometer screw gauge. use the information and the figure to answer question one and two

Figure 1

1.	State the pitch of the micrometer screw gauge	(1mark)
		•••••
2.	What are the two limitation of the micromere screw gauge?	(1mark)

3. Figure 2 shows two identical springs arranged in parallel supporting a force F

Figure 2

The spring constants for the parallel arrangement is K_p while K_1 for each spring Show that $K_p \! = \! 2K$ (3marks)

4. Two table tennis balls are suspended from a support by thin springs and air blown between them as shown in the figure below.

Figure 3

` '	State the observation	(1mark)
(ii)	Explain the observation	(2marks)

5. A Uniform rod of length 4m and mass of 4kg is pivoted at 3.6m mark. The rod is held horizontal with a vertical rope at the 4m marks as shown in the figure 4 below. Calculate the (3marks) tension in the rope.

Figure 4

©Jiset 2009 232/1

6.	Sketch a velocity –time graph for a body thrown vertical upwards to a maximum height.
	(2marks)
7.	A tight rope walker carries a pole to maintain stability. Explain how he used it to achieve it.
/٠	
	(1mark)
8.	A small nail may pierce an inflated car tyre and remain there without pressure reduction in the
	tyre. Explain this observation (2marks)
9.	Give a reason why heat transfer by radiation is faster than heat transfer by conduction
	(1mark)
10.	. Name two forces that determine the shape of a liquid drop on solid surface. (2marks)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11.	Equal masses of water and paraffin are heated for same length of paraffin was found to be greater than the final temperature of	-
	observation.	(2marks)
12.	State Archimedes principle	(1mark)
13.	A solid copper sphere will sink in water while a hollow copper	r sphere of the same size may
	float. Explain this observation.	(2marks)
14.	Explain why pressure is more important than force when cons	sidering the damage which
	stiletto heels might cause to floor	(2marks)

SECTION B (55MARKS)

- 15. A ballon seller has a cylinder of helium gas which he uses to blow up his ballons .The volume of the cylinder is $0.10m^3$.It contains helium gas at a pressure of $1.0x10^7$ Nm⁻² The balloon seller fills each balloon to a volume of $1.0x10^{-2}$ m³ and a pressure of 2.0×10^5 Nm⁻²
- a) **Explain** in terms of particles how the helium in the cylinder produces a pressure

(1mark)

	6
b)	Calculate the total volume that the helium gas occupy at a pressure of $1.2 \times 10^5 \text{N/m}^2$. Assume the temperature of the helium does not change. (3marks)
c)	Calculate the number of balloons of volume $1.0x10^{-2}$ M ³ that the balloon seller can fill using
	the gas. (2marks)
d)	The graph below in figures shows how the pressure of a gas trapped inside a sealed container changes with temperature. The pressure is caused by the gas particles continually hitting the sides of the container Figure 5 (i) Write down the name of the temperature at which the gas particles stop hitting the sides of the container (1mark)
	(ii) What is the momentum of the gas particles at this temperature? Give reason for the

©Jiset 2009 232/1

answer.

(2marks)

•••••		
(iii)	Give the value of the temperature in Kelvin.	(1mark)

16. Jerry makes a spring balance (Newton-meter) for weighing fish. She uses a stiff spring and a part of a bicycle pump. She puts a scale in Newton's on the rod.

Figure 6

(i)	State what happens to the spring when the 40N weight is put on the hook		
		(1mark)	

(11)	Suggest why the spring balance would not be suitable for weighing up to 80N		
		(1mark)	

(b) Jerry loads the spring balance each time. She adds another 5Newtons to the weight, she makes another scale mark on the rod. The graph shown in the figure 7 shows how adding weight increases the length of the scale

Drawn Graph paper

©Jiset 2009 232/1

(i) How can you tell from the graph that the gaps between the marks on the scale are equal (1mark)				
(ii) 	Using the graph find how far long the scale the 30N mark is	(2marks)		
(iii) 	State the relationship between the weight and the length of the scale			
(c)	(i) From the graph determine the spring constant in N\cm	(1mark)		
(ii) E	Express the value of the spring constant in SI units	(1mark)		
) Jerry catches a real big fish. It is too heavy for the balance. Her friend lance. They weigh the fish using both balances as shown in figure 7	Гот also has a		
	Jerry's Balance 25N Poly-bag Fish			

Figure 7

(i) State the reading of the Tom's balance (1mark)

•••••				
•••••				
•••••				
(ii) Expla	n the answer in d (i) above	2		(1mark)
•••••				
	must a liquid and not a ga			(1mark)
•••••				
(b)The diagrar	n below shows the principl	e of the hydraulic c	ar jack	
	piston 2 cm ²		t larger pis	
(i) If a for	ce of 50N is applied to the	Figure 8 smaller piston; calc	culate the pressure p	produced in the oil
at X		•	(2marks	
•••••	•••••			•••••
•••••	•••••			•••••
(ii) Determ	ine the pressure exerted b	y oil at Y		(1mark)
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

• • •		• • •
(iii)	If the small piston moves down a distance of 5cm, determine how far upwards the large piston moves. (2marks)	
(iv)	Using the information in the figures determine the velocity ratio v ₂ of the hydraulic jack	
•••		•••

18. Ian has a mass of 70kgs.he dives from a high board .his vertical velocity at different times is shown in the graph in figure 9

Drawn graph paper

a) (i)	From the graph calculate The time he took to reach the water.		
(ii)	The height of the diving board	(3marks)	
(iii)	Ian's deceleration in the water.		
	(2marks)		
(iv)	The retarding force on Ian in the water	(3marks)	
(v)	The depth in the water that Ian reached	(3marks)	
19	(a) Define angular velocity and state its SI unit	(2marks)	
	(b) What provides for the centripetal force the following cases of circular	motion?	
(i) The moon moving around the earth	(1mark)	

(11)	A cyclist negotiating a curve	(1mark)
 (c)	A fun fair ride of diameter 12m makes 0.5 revolutions per sec	
(i) 	Its angular velocity	(2marks)
(ii)	The linear speed of a child ride in it	(3marks)
(iii)	The centripetal acceleration experienced by the child if his r	-
•••		