NAME	INDEX NO	DATE
SCHOOL	SIGNATURI	Ε

232/3 PHYSICS PRACTICAL JULY/AUGUST 2010 2hr 30min

LAICOMET Kenya Certificate of Secondary Education 2010

232/3 PHYSICS Paper 3

INSTRUCTIONS TO CANDIDATES

- Answer ALL the questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 min of the time given to go through the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability and accuracy, and the use made of them.
- *Record the observations as soon as they are made. Mathematic tables, slide rules and electronic calculators may be used.*

QUESTION	1a	1b	1 <i>c</i>	1d	1 <i>e</i>	2a(i)	<i>(iv)</i>	<i>(v)</i>	(<i>vi</i>)	2(<i>b</i>) <i>i</i>	ii	(iii)	(iv)	TOTAL
Maximum	1	7	5	3	4	1	1	1	2	5	5	3	2	40
Score														
Candidate's														
score														

Q1 You are provided with the following apparatus:

- Two metre rules
- Two stands
- Two clamps
- Two bosses
- Three pieces of thread (1 metre, 30cm and 30cm)

- One optical pin
- A piece of cellotape
- A spring
- One 200g mass
- Stop watch

Set the apparatus as shown in fig1 attach the pin (pointer on one end of the metre rule using cellotape)

- Suspend one end of the metre rule with a string at 5cm mark from the end.
- Suspend the other end with a spring also 5cm from the end so that the metre rule is horizontal. Hold the other metre rule vertically on the bench so that it is near the end with a pointer as shown in the figure above.

a) Read the pointer position Lo = cm (1mk)

Hang on the horizontal metre rule, the 200g mass at a length L=10cm from the spring. Record the extension (ℓ) of the spring in table 1 below

- Displace the mass slightly downward and release it to oscillate vertically, time for 20 oscillations.
- Record in the table the time for 20 oscillations
 Repeat for other positions L of the mass.

b)	Tab	le						7mks
		Length	10	20	30	40	50	
		L(cm) Extension e (cm)						
		Time for 20 oscillations						

Period time T(sec)

2

$T^2(\sec^2)$			

c) Plot the graph of extension ' ℓ '(y- axis) against T² on the grid paper provided (3mks)

GRAPH

d) Calculate gradient of the graph

(3mks)

e) Given that
$$\ell = \frac{PT^2}{4\pi^2} + C$$

Determine the value of P

(4mks)

2. You are provided with a metre rule, a lens holder, a concave lens, a candle, and mounted white screen.

Proceed as follows:

i Set up the apparatus as shown in figure 2 above. (ensure that the candle and the lens are in the line)

- ii) With the candle placed a distance L =100cm from the screen ,determine the position of a sharply focused magnified image of the candle on the screen by moving the lens
- iii) Determine the distance of the lens to the candle $U_{1=.....}$ cm (1mk)
- iv) Now move the lens towards the screen until you get a sharply focused diminished image. Determine the new distance of the lens from the candle U_2

v) Calculate the displacement of the lens (1mk) $d=U_2-U_1 =.....cm$

Given that
$$f = \frac{L^2 - d^2}{4L}$$
, calculate the value of f (2mks)

b) With the same set up ensuring that L= 100cm adjust the lens until you get a sharp diminished image on the screen. Measure the object distance U and image distance V

i) Repeat the procedure withy L= 95cm, 90cm, 85cm, 80cm and 75cm each time recording the value of U and V and tabulating the results in the table II below.

(5mks)

L (cm)	100	95	90	85	80	75
--------	-----	----	----	----	----	----

U (cm)			
V (cm)			
$m = \frac{V}{U}$			

ii) Pot the graph of M against V

(5mks)

GRAPH

iii) Determine the slope of the graph

(3mks)

iv) Given that $\frac{v}{f} = m+1$ determine the focal length of the lens from the graph above

(2mks)