Name	e							Adr	n. No_			In	dex No	D		
									Ca	andi	date's si	gnatur	e			
									Da	ate _						
PAP JUL	THEM	1	S AL	Г. А												
Keny MAT PAP	ya Cer THEM	tificat ATIC	e of S	econ	SCHOC			INAT	ION							
(a) W (b) T (c) A (d) A quest (e) SI quest (f) M (g) N when (h) T	Vrite you his pap Answer Il answer ion. how al ion. farks m fon-pro e stated his pap	our name over core ALL vers are lay be ogrammed other core	me, ad assists of the quant work teps in given mable rwise.	miss of TV estic king you for o	WO sections in sections in sections in sections in section in sect	and indefions 1 a ction I a ction I a ction I a ctions given trions giver trions gi	nd seand and on the control of the c	ection I ny FIV the que y your a if the ors and	I. E question particular de la constitución particular de la constitución de la constituc	stion pape s at r is v	ovided above from some of the stage wrong. athematic or missing	ection paces paces	e spac	es belo	ow eacl	1
<u>FOR</u>	EXA	MINE	R'S U	<u>SE</u>	<u>ONLY</u>											
SEC'	TION	I														_
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
CE C	TION	тт														
17	TION 18	11 19	20		21	22	2	23	24		TOTAL		GR	AND	ГОТАІ	Ĺ

1. Use logarithm tables to evaluate:-

2. Simplify the following:

(3 marks)

$$\left(\begin{array}{c} \frac{1\frac{1}{2} + 3^{1}/6}{4^{1}/3 - 3^{2}/5} \end{array}\right) \div 1^{2}/3$$

3. A boy cycled for 40 minutes at 30km/h. He then travelled for 2 hours in a mini bus at 70km/h. Find the average speed for the whole journey.

(3 marks)

4.	A water tank has a capacity of 70 litres. A similar model tank has a capacity of 0.25 litres.	
	If the larger tank has a height of 150cm, calculate the height of the model tank.	3 marks)

5. Solve the following inequalities and represent the solutions on a single number line. (3 marks)
$$2-2x<4$$
 $-6-3x\geq -15$

6. If
$$4x^2 - 32x - 20 + k$$
 is a perfect square, find the value of k. (3 marks)

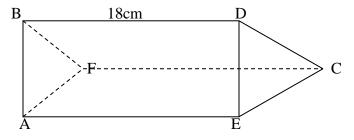
7. Solve for the values of x that satisfy the following equation.

$$9^{x} = 27^{(2x+12)}$$
 (3 marks)

8. The hire purchase terms of a T.V set is a deposit of Ksh. 4,500 and six monthly instalments of Ksh. 1000 each. The hire purchase price is 175% of the cost price while the cash price is 25% more than the cost price. What is the cash price of the T.V set? (3 marks)

9. Express in surd form and simplify by rationalizing the denominator. $\frac{1+\cos 30^0}{1-\sin 60^0}$ (3 marks)

10.	The sides of a rectangle are given as 4.2cm and 2.8cm, each correct to one decimal place Find the maximum percentage error in its area.	. (3 marks)
11.	Three bells P, Q and R are programmed to ring after an interval of 15 minutes, 25 minutes and 50 minutes respectively. If they all rang together at 6.45 am, when will t	hey next
	ring together.	(3 marks)
12.	Find the equation of the perpendicular bisector of the line AB where the co-ordinates of	
	A and B are (-3, 2) and (6, 4) respectively.	(4 marks)


13. Simplify the following without using tables.

$$Log_{10}(7x+3) - log_{10}(2-x) = 1$$
 (3 marks)

14. Simplify the expression.
$$\frac{2a^2 - 3ab + b^2}{a^2 - b^2}$$
 (3 marks)

16. A prism of length 18cm is represented by the diagram below whose cross-section is an equilateral triangle of side 6cm.

6cm

(a) Draw a net of the prism and label it correctly.

(1 mark)

(b) Calculate the total surface area of the prism.

(2 marks)

SECTION II

Answer ONLY FIVE questions in this section.

17. Use a ruler and a compass only for all constructions in this question.

(a) Construct a triangle XYZ in which $XY = 6cm$, $YZ = 5cm$ and angle $XYZ = 120^{\circ}$.	(2 marks)
(b) Measure XZ and angle YXZ.	(2 marks)
(c) Construct the perpendicular bisector of XZ and let it meet XZ at M.	(1 mark)
(d) Locate a point W on the opposite side of XZ as Y and that $XW = ZW$ and	
YW = 9cm and hence complete triangle XZW.	(2 marks)
(e) Measure WM and hence calculate the area of triangle XZW.	(3 marks)

18.	A businesslady bought 50 rabbits and 40 chicks for Ksh. 12,800. If she had bought twice as many chicks and half as many rabbits she would have paid shs. 3,700 less. She sold each rabbit at a profit of 10% and each chick at a profit of 20%.							
	(a) Form two equations to show how much she bought the chicks and the rabbits.	(2 marks)						
	(b) Find the cost of each.	(3 marks)						
	(c) Calculate the profit she made from the sale of the chicks and the rabbits	(2 marks)						
	(d) What percentage profit did she make from the sale of the 50 rabbits and the 40 chic	ks. (3 marks)						

A swimming pool 20m long is 1m deep at its shallow end and 4m deep at its deep end. The pool is 10m wide.	
(a) Find the volume of water in m ³ when the pool is full.	(5 marks)
(b) A circular pipe of diameter 14cm is used to empty the swimming pool. Water flows through the pipe at a rate of 5m per second. Calculate the time it would take to the nearest minute to empty the pool.	(5 marks)
neurose minute to empty the poor.	(b mans)
	The pool is 10m wide. (a) Find the volume of water in m³ when the pool is full. (b) A circular pipe of diameter 14cm is used to empty the swimming pool. Water flows

20. The data below shows the marks scored by 36 students in a Maths test which was marked out of 100.

40	20	31	70	30	41
25	40	48	65	64	28
59	32	72	72	58	64
75	76	54	68	75	61
52	86	58	36	33	72
29	59	35	91	64	75

(a) Make a frequency distribution table using a class interval of 10, starting with 20-29. (2 marks)

(b) Draw a histogram to represent the information. (4 marks)

(c) Calculate the mean of the distribution. (4 marks)

The diagram above shows triangle OAB in which N is the mid-point of AB and M is a p on OA such that OM : $MA = 2:1$. Lines ON and BM meet at X such that OX = hON are	
(a) Given that $OA = a$ and $OB = b$ express in terms of a and b the following vectors.	
(i) \overrightarrow{AB}	(1 mark)
(ii) ON	(2 marks)
(iii) BM	(1 mark)
(b) By expressing OX in two different ways determine the values of h and k.	(6 marks)
	on OA such that OM: MA = 2:1. Lines ON and BM meet at X such that OX = hON and Given that OA = a and OB = b express in terms of a and b the following vectors. (i) \overrightarrow{AB} (ii) \overrightarrow{ON}

22.	The diagram below (not drawn to scale) shows the cross-section of a hexagonal solid metal prism length 40cm. 10cm 12cm	
Calcul	ate:- (a) The area of the shaded region (Take the hexagon to be regular)	(5 marks)
	(b) The volume of the material used to make the metal in cm ³ .	(2 marks)
	(c) If the density of the metal prism is $4.5 \ensuremath{\mathrm{g}}/\ensuremath{\mathrm{cm}}^3$. Finds its mass in kgs.	(3 mark)

23.	Three boats X, Y and Z are approaching a harbour H. X is 14km from the harbour on a bearing of 090°. Y is 12km from the harbour on a bearing of 130° and Z is 24.30km to the West of Y and on a bearing of 240° from the harbour.						
	(a) Draw a sketch diagram showing the position of the three boats and the Harbour.	(1 mark)					
	(b) Calculate:- (i) The distance between X and Y.	(3 marks)					
	(ii) The distance of Z from the harbour.	(3 marks)					
	(iii) The distance between X and Z.	(3 marks)					

24.	A transformation T_1 maps ΔABC whose vertices are $A(-2,0)$, $B(1,-2)$ and $C(0,1)$ onto ΔA whose vertices are $A^1(2,4)$, $B^1(4,1)$ and $C^1(1,2)$. Another transformation T_2 maps the same onto $\Delta A^{11}B^{11}C^{11}$ whose co-ordinates are $A^{11}(4,2)$, $B^{11}(1,4)$ and $C^{11}(2,1)$. Another transformation T_3 maps ΔABC onto $\Delta A^{111}B^{111}C^{111}$ such that $A^{111}(-4,0)$, $B^{111}(2,-4)$ and $C^{111}(0,2)$.						
	(a) On the same axis draw the triangle ABC, $A^1B^1C^1$, $A^{11}B^{11}$ C^{11} and $A^{111}B^{111}C^{111}$	(4 marks)					
	(b) Determine the transformations (i) T_1	(2 marks)					
	(ii) T_2	(2 marks)					
	(iii) T ₃	(2 marks)					

KIBWEZI SECONDARY SCHOOLS EXAMINATION Kenya Certificate of Secondary Education MATHEMATICS ALT. A PAPER 1

MARKING SCHEME

			T
1.	No Log		
	12.3 <u>1</u> .0899 +	M1	all logs √
	0.089 2.9494	3.41	A 1 1 0 1
	7.654 0.1393 0.8839	M1	Add & sub.
	$\frac{0.335}{1.25554}$ x $^{1}/_{3}$	M1	div. By 3
			,
	$\frac{3+2.2554}{3}$		
	5.6468×10^{-1} $\frac{3}{1.7518}$		
	3.0400 X 10		
	=0.56468		
	=0.5647	A1	
		4	
2.	$N = 1\frac{1}{2} + \frac{3^{1}}{6} = \frac{3}{2} + \frac{19}{6} = 9 + 19 = \frac{28}{6}$		
	$N = 1\frac{1}{2} + \frac{3^{1}}{6} = \frac{3}{2} + \frac{19}{6} = \frac{9+1}{6} = \frac{28}{6}$	M1	
	$D \Rightarrow 4^{1}/_{3} - 3^{2}/_{5} = {}^{13}/_{3} - {}^{17}/_{5} = \underline{65 - 5}1 = \underline{14}$ 15	3.41	
	15 15	M1	
	2 1 5		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	3 1 -5 x 3		
	$= 5 \times \frac{3}{5} = 3$	A1	
		03	
_			
3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N/I 1	
	Dist = $\begin{pmatrix} \frac{40}{60} \times \frac{30}{21} \end{pmatrix}$ + $(2 \times 70) = 160$ km	M1	
	Total time taken = $^{2}/_{3} + 2 = 2^{2}/_{3}$ hrs	M1	
	Av. Speed = $160 \text{ x}^{-3}/_{8}$		
	= 60km/h	A1 03	
		03	

		ı	
4.	V.S.F = $\frac{70}{0.25}$ = 280		
	0.25 = 280	M1	
	L.S.F = $3\sqrt{280} = 6.542$	M1	
	Height of smaller tank = 150		
	6.542 = 22.93cm		
	= 22.93 cm (2 dp)	A1	
5.	$2 - 2x < 4 \longrightarrow -2x < 2 \longrightarrow x > -1$	03	
5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	
	$-6-3x \ge -15$		
	\longrightarrow $-3x \ge -9$ \longrightarrow $x \le 3$		
	$\therefore -1 < x \le 3$		
	-4 -3 -2 -1 0 1 2 3 4 →	B1	
	7 3 2 1 0 1 2 3 7	03	
6.	$(2x - p)^2 = 4x^2 - 32x - 20 + k$	M1	corr expression
	$4x^2 - 4px + p^2 = 4x^2 - 32x - 20 + k$		
	-4p = -32 p = 8	A1	value of p
	$p^2 = -20 + k$	111	value of p
	$8^2 = -20 + k$		
	64 = -20 + k		
	k = 84	A1	value of k
		03	
7.	$9x^2 = 27^{(2x+12)}$		
	$3^{2(x2)} = 3^{3(2x+12)}$		
	$2x^2 = 3(2x + 12)$		
	$2x^2 = 6x + 36$		
	$2x^2 - 6x - 36 = 0$ $x^2 - 3x - 18 = 0$	M1	equation
	Sum = -3 Numbers = -6, 3	IVII	equation
	Product -18		
	$x^2 + 3x - 6x - 18 = 0$		
	x(x+3) - 6(x+3) = 0	3.51	
	(x-6) (x+3) = 0 Either $x-6=0 \longrightarrow x=6$	M1	$\sqrt{\text{factorization}}$
	Or $x + 3 = 0 \longrightarrow x = -3$	A1	C.A.O both
		03	CH HO COLL
8.	H.P = $4500 + (1000 \times 6) = 10,500/=$	M1	
	Cost price = $100 \times 10{,}500$		
	$\frac{100 \text{ x 10,500}}{175} = 6000/=$	M1	
	Cash price = $\underline{125} \times 6000$		
	100 = Ksh. 7,500	A1	
		03	

9. $\cos 30^0 = \frac{\sqrt{3}}{2}$; $\sin 60^0 = \frac{\sqrt{3}}{2}$	B1	sub. of tri values
$\frac{1 + \sqrt{3}}{\frac{2}{1 - \sqrt{3}}} = \frac{2 + \sqrt{3}}{2 - \sqrt{3}}$		
$\frac{2}{1-\sqrt{3}} \qquad 2-\sqrt{3}$		
2		
$\frac{2+\sqrt{3}}{2-\sqrt{3}} x \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{4+2\sqrt{3}+2\sqrt{3}+3}{4-3}$	2.51	
$2 - \sqrt{3} \qquad 2 + \sqrt{3} \qquad \qquad 4 - 3$	M1	√mult. By conjugate Surd
$= 7 + 4\sqrt{3}$	A1 03	
4.2cm	03	
10. 2.8cm		
Max length = 4.25		
Max width = 2.85		
Max area = (4.25×2.85) cm ² = 12.11 cm ²		
Min length = 4.15cm Min width = 2.75cm	M1	for both max
Min area = (4.15×2.75) cm ²		and min
$= 11.41 \text{cm}^2$		
Error = max area - min area		
Error = $\frac{12.11 - 11.41}{2}$		
= 0.7		
$\frac{1}{2}$ = 0.35		
Actual area = (4.2×2.8) cm ²		
$= 11.76 \text{cm}^2$		
% Error in area = error x 100%		
Actual = 0.35 x 100		
11.76	M1	Finding % error
= 2.976%	A1 3	
11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
3 5 25 25		
5 1 5 5 5 1 1		
L.C.M = $2 \times 3 \times 5^2 = 150 \text{min}$	_D1	com I CM
Time taken $= 2 \times 3 \times 3^{2} = 150 \text{min}$ = 2 hrs 30 min	=B1	corr. L.C.M
11me taken = 2hrs 30 min		

	Ring together next at 6.45 am	M1	
	+ 2.30		
	9.15 am or 0915 hrs	A1	
		03	
12.	Grad. $AB = 4 - 2 = \frac{2}{9}$ product of $M_1 \times M_2 = -1$		
	$M1 = {}^{2}/_{9} \longrightarrow M_{2} = -1 \times {}^{9}/_{2}$ $M_{2} = {}^{-9}/_{2}$	B1	√grad.
	Bisector = mid point $\left(-\frac{3+6}{2}, \frac{2+4}{2}\right)$ = $(1.5, 3)$	B1	mid pt
	General point (x, y) , $(1.5, 3)$ Grad = $\frac{-9}{2}$ $\frac{y-3}{x-1.5} = \frac{-9}{2}$ $2(y-3) = -9 (x-1.5)$	M1	eqn
	$2y - 6 = -9x + 13.5$ $2y = -9x + 19.5$ $y = \frac{-9}{2}x + \frac{19.5}{2}$ $y = 9^{3}/4 - 4\frac{1}{2}x$	A1	
		04	
13.	$Log_{10}\left(\frac{7x+3}{2-x}\right) = Log_{10} \ 10$	M1	for single logs
	$\frac{7x+3}{2-x} = 10$	M1	√ly dropping logs
	7x + 3 = 10(2 - x) 7x + 3 = 20 - 10x 17x = 17		
	x = 1	A1	
		03	
14.	$\frac{2a^2 - 2ab - ab + b^2}{(a+b)(a-b)} =$		
	2a (a - b) -b(a - b) = $(2a - b) (a - b)$	M1	factorised Numerator
	$\longrightarrow (a+b)(a-b)$	M1	factorised Denominator
→	$= \frac{(2a-b) \cdot (a-b)}{(a+b) \cdot (a-b)}$ $= \frac{2a-b}{a+b}$		
	$\overline{a+b}$	A1	
		03	

15.	$\sin 2x - 10 = 0.5$	B1	
	Acute angle = 30°		
	$2x - 10 = 30^{\circ}, 150^{\circ}$	B1	both 30° & 150°
	$2x = 40^{\circ}$, 160°		
	$x = 20^0$ and 80^0	B1	both values
		03	
16	(a) F 18cm D		
	į į		
	\mathcal{D}	D1	
	6cm	B1	
	$F \stackrel{\text{defi}}{\leq} D$		
	6cm 6cm		
	A		
	F D		
	(b) Total surface area = $3 \times 18 \times 6 + 2 \times \frac{1}{2} \times 6 \times 6 \sin 60^{0}$	M1	
	=355.18+31.18		
	$= 386.36 \text{cm}^2$	A1	
		03	
1.5			
17.	(a) Sketch X		
	Com		
	6cm		
	$\sqrt{120^{0}}$		
	$\frac{\sqrt{120}}{\sqrt{5}}$ Z		
	1 30111 2		
		B1	for 120 ⁰
			construction
		B1	complete
			construction of
			ΔXYZ

(e) Measure WM = $6.4 \text{cm} \pm 0.1$	(b)	Length of XZ = 9.6 cm ± 0.1 \angle YXZ = $26^{\circ} \pm 1^{\circ}$	B1 B1	length x 2 angle YXZ
	(c)	Bisector of XZ to appoint M	B1	
Area = $\frac{1}{2} \times 6.4 \times 9.6$ = 30.72cm^2 A1 10 18. (a) Let the cost of each rabbit = sh. X And cost of each chick = sh. Y Then $50x + 40y = 12,800 \dots$ (i) $25x + 80y = 12,800 - 3700 = 9100$ Or $50x + 160y = 18,200 \dots$ (ii) (b) $50x + 40y = 12,800$ $50x + 160y = 18,200$ $-120y = -5,400$ $y = \text{sh. } 45$ From equation (i) $50x + 40(45) = 12,800$ $50x + 1800 = 12,800$ A1 substitution Sales of 50 rabbits $50 \times 220 \times 110/100 = \text{sh. } 12,100$ Sales of 40 chicks $40 \times 45 \times 120/100 = \text{sh. } 2160$ M1 Total sales $= 12,100$ $\frac{+2,160}{\text{Sh. } 14,260}$ A1	(d)	<u>•</u>		
And cost of each chick = sh. Y Then $50x + 40y = 12,800 \dots$ (i) $25x + 80y = 12,800 - 3700 = 9100$ Or $50x + 160y = 18,200 \dots$ (ii) B1 equation (b) $50x + 40y = 12,800$ $50x + 160y = 18,200$ $-120y = -5,400$ $y = sh. 45$ From equation (i) $50x + 40(45) = 12,800$ $50x + 1800 = 12,800$ $50x + 1800 = 12,800$ $50x = 11,000$ $x = sh. 220$ A1 substitution $x = 30$ x	(e)	Area = $\frac{1}{2}$ x 6.4 x 9.6	M1 A1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18. (a)	And cost of each chick = sh. Y Then $50x + 40y = 12,800$ (i) 25x + 80y = 12,800 - 3700 = 9100		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	50x + 160y = 18,200 $-120y = -5,400$	M1	
Sales of 40 chicks $40 \times 45 \times 120/_{100} = \text{sh. } 2160$ M1 Total sales $= 12,100$ $\frac{+2,160}{\text{Sh. } 14,260}$ A1		50x + 1800 = 12,800 50x = 11,000		
Total sales = $12,100$ $\frac{+2,160}{\text{Sh. }14,260}$ A1		Sales of 50 rabbits $50 \times 220 \times {}^{110}/{}_{100} = \text{sh. } 12,100$		
+ 2,160 Sh. 14,260		Sales of 40 chicks $40 \times 45 \times 120/_{100} = \text{sh. } 2160$	M1	
Total purchase — 50 v 220 — 11 000		+ 2,160	A1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			M1	simplification
Total profit = $14,260 - 12,800 = \text{sh. } 1460$ A1 profit		Total profit = $14,260 - 12,800 = \text{sh. } 1460$	A1	profit
Percentage profit = $\frac{1460}{12800}$ x 100% = 11.4%		$\frac{1}{12800}$		
= 11.4% A1 10		= 11.4%		

19.	(a)						
					10m 1		
			A	B1	Sketch diagram or implied		
				x 1 = 200m ² ection area		M1	
		= 1/	$(2 \times 3 \times 20)^{2}$ = 3001			M1 A1	
		Total volu		- 300 = 500i	m^3	A1 A1	
	(b)		ameter 14ci				
		Vol per sec	c. —	M1			
				A1			
		Total vol. Rate of em ∴ time tak	of pool = 5 apting = 4.6 cen	52m ³ /min 500 m ³			
				$\frac{4.62 \text{m}^3}{4.62 \text{m}^3}$	08.23 minutes	M1 M1	
					108 minutes	A1 C.A.O	accept 1hr 48 min
						10	
20.	(a)	Class	X	f	fx		
		20-29	24.5	4	98		
		30-39	34.5	5	172.5	7.1	
		40-49	44.5	4	178	B1	√classes
		50-59	54.5	7	381.5	B1	√ column of
		60-69	64.5	6	387	D1	mid pts
		70-79	74.5	8	596	B1	$\sqrt{\text{frequencies}}$ $\sqrt{\text{for fx column}}$
		80-89 90-99	84.5 94.5	1 1	84.5 94.5	B1	V IOF IX COLUMN
		90-99	74.3	$\Sigma f = 36$	$\Sigma fx = 1992$		
	(b)	See graph	paper for h	B1	√axes (both labeled)		
				B2	$\sqrt{\text{bars of same}}$ Width		
						B1	height or Frequencies
	(c)	$\overline{X} = \underline{\Sigma f x}$ Σf	$=\frac{19}{30}$	M1	$\sqrt{\text{expression seen}}$		
		21	5	A1			
					5.33 marks	10.	
-					7	1	

21.	(a)	(i) $AB = AO + OB = -a + b = b - a$	B1	
		(ii) $ON = OA + AN = a + \frac{1}{2}AB$		
		$= a + \frac{1}{2} (b - a)$	M1	
		$= \frac{1}{2} (a + b)$	A1	accept ½ a + ½ b
				1
		(iii) BM = BO + OM = $-b + \frac{2}{3}a$		
		ПП		
		B1		
	(b) O	B1		
	` '			
		$OX = OM + MX = \frac{2}{3}a + KMB$		
		$= \frac{2}{3}a + k(-BM)$		
		- / Ju + In(D1/1)		

$= {}^{2}/_{3}a - k ({}^{2}/_{3}a - b)$ $= {}^{2}/_{3}a - {}^{2}/_{3}ka + kb$ $= ({}^{2}/_{3} - {}^{2}/_{3}k) a + kb$ $= ({}^{2}/_{3} - {}^{2}/_{3}k) a + b$ $= ({}^{2}/_{3} $	B1 M1	
$h_{2} = k = h = 2k \dots (ii)$	M1	
$\frac{4}{3} - \frac{4}{3}k = 2k$ \longrightarrow $\frac{4}{3} = 2k + \frac{4}{3}k$		
$= 4 = 6k + 4k$ $= 4 = 10k \implies k = \frac{2}{5}$	A1	
Sub for k in eqn (ii) $h = 2 x^2/_5 = {}^4/_5$ = $h = {}^4/_5$	A1	
	10	
22. (a) Hexagon six sides \rightarrow centre angle $= \frac{360^{\circ}}{6} = 60^{\circ}$ 10cm	B1	∠600
10cm 12cm 12cm 12cm 60°	B1	may be implied
Shaded area = $6 (\frac{1}{2} \times 12^{2} \sin 60^{0} - \frac{1}{2} \times 10^{2} \sin 60^{0})$ = $6(72 \times 0.866 - 50 \times 0.866)$ = $6(62.352 - 43.3)$ = $6(19.052)$ = 114.312cm^{2}	M1 M1	
(b) Vol of material used = cross section area x length $= 114.312 \times 40$ $= 4572.48 \text{cm}^3$	M1 A1	
(c) Mass = D x V = 4.5 g/cm ³ x 4572.48cm ³ = 20576.16 gm ÷ 1000 = 20.57616kg = 20.58kgs (2dp)	M1 M1 A1	

		7.		
23.	(a)	14km	B1	
	(b)	The dist. Btn X and Y => $a^2 = b^2 + c^2 - 2bc \cos A$	3.61	
		$XY^{2} = 14^{2} + 12^{2} - 2 \times 14 \times 12 \cos 40^{0}$ $= 196 + 144 - 336 \times 0.766$	M1	
		= 340 - 257.376		
		$XY^2 = 82.624 \longrightarrow XY = 9.09$ km	M1 A1	
		$\sim 9.1 \text{km} (1 \text{ dp})$	AI	
		= 9.1km (1 up)		
	(c)	The dist of Z from the harbour \Rightarrow $\angle HYZ = 40^{\circ}$		
		(Alternate angles)		
		$\frac{HZ}{\sin 40^0} = \frac{24.30}{\sin 110^0}$		
		$\overline{\sin 40^0} \qquad \overline{\sin 110^0}$	M1	
		$HZ = \underline{24.30} \times \sin 40^{\circ}$	M1	
		Sin 110^{0}		
		$= 24.30 \times 0.6428 = 14.678$ km	A 1	
		$\frac{\text{0.9397}}{\text{0.9397}} \simeq 14.7 \text{km} (1 \text{ dp})$		
	(4)	Dist btw X and Z $XZ^2 = HX^2 + HZ^2 - 2HX$, (HZ) Cos 150°		
	(d)	$XZ^2 = 14^2 + 14.7^2 - 2 \times 14 \times 14.7 \cos 150^0$	M 1	
		= 196 + 216.09 - 411.6 - 0.866 $= 412.09 - (-356.45)$	M1	
		= 412.09 + 356.45 $= 412.09 + 356.45$	1111	
		$XZ^2 = 768.54 \longrightarrow XZ = 27.723$	Λ1	
		$AZ = 708.34 \longrightarrow AZ = 27.723$ $\simeq 27.7 \text{km (1 dp)}$	A1	
		– 27.7km (1 up)	10	

Mirro	· line '	T1 = fl-4; 7 (5 4 2 2 1 0 1 2 2 4 5		
-4 -3	-2 -1	T1 reflection y –axis 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 0 1 2 3 4 5 6 x-axis A ¹¹ B ¹¹ C ¹¹ A ¹ B ¹ C ¹ A ¹¹¹ B ¹¹¹ C ¹¹ 1	A B	С
			B1	ΔABC
				$\Delta A^1 B^1 C^1$
				$\Delta A^{11}B^{11}C^{11}$
			B1	$\Delta A^{111}B^{111}C^{111}$
(b)	(i)	T_1 is a reflection mirror line	B1	
` /	,	$y + x = 2 \qquad \text{or } y = 2 - x$	B1	corr. description
				of transformation
	(ii)	T ₂ is a rotation	B1	
		+ve 180^0 or +ve half turn about $(1, 1)$	B1	corr. description
				of transformation
	(iii)	T ₃ is an enlargement	B1	
	, ,	Centre (0, 0), scale factor 2.	B1	corr. description
				of transformation
			10	
	-4 -3 (b)	(b) (i) (ii)	$y+x=2 \qquad \text{or } y=2-x$ (ii) $T_2 \text{ is a rotation} \\ +\text{ve } 180^0 \text{ or +ve half turn about } (1,1)$ (iii) $T_3 \text{ is an enlargement}$	$\begin{array}{c} & & & B1 \\ \\ & & & B1 \\ \\ & & & & B1 \\ \\ & & & & & B1 \\ \\ & & & & & & & & \\ \\ & & & & & & & $

Name	11. Adm. No Index No	
	Candidate's signature	

121/2 MATHEMATICS ALT. A PAPER 2 JULY 2011 2 ½ HOURS

KIBWEZI SECONDARY SCHOOLS EXAMINATION Kenya Certificate of Secondary Education MATHEMATICS ALT. A PAPER 2 2 ½ HOURS

INSTRUCTIONS TO CANDIDATES

- (a) Write your name, admission No. and index No. in the spaces provided above.
- (b) This paper consists of TWO sections 1 and section II.
- (c) Answer <u>ALL</u> the questions in section I and any <u>FIVE</u> questions from section II.
- (d) All answers and working must be written on the question paper in the spaces provided below each question.
- (e) Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
- (f) Marks may be given for correct working even if the answer is wrong.
- (g) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
- (h) This paper consists of 18 printed pages
- (i) Candidates should check the question paper to ascertain that no missing questions.

FOR EXAMINER'S USE ONLY

SECTION I

	,	_														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL						

SECTION II (50 MARKS)

Answer ALL the questions in this section.

1. Solve the simultaneous equations using matrix method.

(3 marks)

$$x + 2y = 21$$
$$2x = 34 - 2y$$

2. A triangular flower garden has an area of 36m². Two of its edges are 16m and 13.5m. Find the angle between these edges. (2 marks)

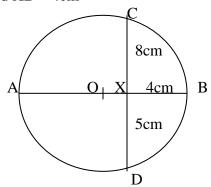
3. A mixed secondary school can accommodate 840 students. The number of girls must be at least 240 while the number of boys must exceed 300. Taking x to represent the number of girls and y to represent the number of boys, write down all the inequalities representing this information. (3 marks)

- 4. A two digit number is formed from the first four prime numbers.
 - (a) Draw the table to show all the possible outcomes.

(2 marks)

(b) Calculate the probability that a number chosen from the two digit numbers is an even number.

(1 mark)


5. Make s the subject of the formula.

(3 marks)

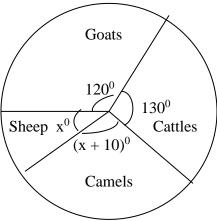
$$a = \frac{s^2 - p}{p^2} - q$$

6. The sum of the first five terms of an AP is $^{65}/_{2}$ and five times the seventh term is equal to six times the second term. Find the first term and the common difference of the AP. (4 marks)

7. In the figure below, O is the center of the circle. Chords AB and CD intersect at X. CX = 8cm, XD = 5cm and XB = 4cm

Calculate the length of AX and hence find the radius of the circle.

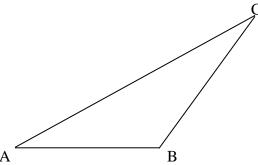
(3 marks)


- A map has a scale of 2cm to 40km. A forest in the region covers an area of 3505km². 8.
 - (a) State the scale of the map.

(1 mark)

(b) What is the area of the forest on the map?

(2 marks)


9. A farmer has four types of animals on his farm. The pie chart below represents the number of animals on the farm. If the number of goats were 30, calculate the number of camels on the (4 marks) farm.

10. A quantity P is partly constant and partly varies as the square of Q. When Q = 2, P = 40 and when Q = 3, P = 65. Determine the value of P when Q = 5. (3 marks)

11. Find the center and the radius of the circle whose equation is: $x^2 + y^2 - 6x - 10y - 66 = 0$ (3 marks)

12. The locus of a point P is such that $\angle APB \le \angle ACB$. Locate and shade the region represented by point P. (3 marks)

13.	A car was valued at Ksh. 500,000 in January 2010. Each year its value depreciates at 12% p.a. Find after how long would the value depreciate to Ksh. 250,000.	(3 marks)
14.	(a) Write down and simplify the first four terms of the expression $(2 + \frac{1}{4}x)^{10}$ in ascending	ng
	powers of x.	(1 mark)
	(b) Hence find the value of $(2.025)^{10}$ correct to the nearest whole number.	(2 marks)

15.	Find the distance along the circle of latitude between
	$A(40^{0}S, 20^{0}W)$ and $B(40^{0}S, 100^{0}W)$

(3 marks)

16. Find the area enclosed by the curve $y = x^2 - 4$ and the x - axis, x = 0 and y = 4 (4 marks)

SECTION II (50 MARKS) Answer only five from this section

17.	A matatu left Kibwezi at 7.00 am and travelled towards Nairobi at an average speed of 60km/hr. A car left Nairobi at 9.00am and travelled towards Kibwezi at an average speed of 80km/hr. The distance between the two towns is 324km.						
Find:-	(a) The	e time each vehicle arrived at their destination. (i) Matatu	(2 marks)				
		(ii) Car	(2 marks)				
	(b)	(i) The distance the matatu covered before the car started to move from Nairobi to Kibwezi.	(1 mark)				
		(ii) The time the two vehicles met on the way.	(3 marks)				
(c) Ho	ow far t	he car was from Kibwezi when they met.	(2 marks)				

18. The table below shows values of x and some values of y for the curve $y = x^3 - 9x$ for $-4 \le x \le 4$.

(a) Complete the table by filling in the missing values of y.

(2 marks)

X	-4	-3	-2	-1	0	1	2	3	4
У	-28				0				28

(b) On the grid provided, draw the graph of $y = x^3 - 9x$ for $-4 \le x \le 4$.

Use the scale: Horizontal axis 1cm for I unit

Vertical axis 1cm for 5 units.

(5 marks)

(c) By drawing a suitable straight line, on the same grid (b) above, solve the equation:

$$x^3 - 13x - 12 = 0$$
 (3 marks)

19.	In the figure below K, M and N are points on the circumference of a circle O. The points K, O, M and P are on a straight line. Find the values of the following angles stating the reason ir each case.									eason in			
	caen case.	K N	I P	N	L	40^{0}	О	130^{0}					
	(a) ∠MLN												(1 mark)
	(b) ∠OLN												(2 marks)
	(c) ∠ LNP												(2 marks)
	(-) = ==												(= ::::::::::::::::::::::::::::::::::::
	(d) ∠MPN												(3 marks)

(e) Given that MP = 8cm and NP = 10cm calculate to 3 decimal places the length of KM. (2 marks)

20. (a) Complete the table below.

\mathbf{x}^0	0_0	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	1800	210^{0}	240^{0}	270^{0}	300^{0}	330^{0}	360^{0}
Sin x ⁰	0		0.87		0.87		0		-0.87	-1		-0.5	0
$2\sin{(x+30^0)}$	1	1.73	2		1	0		-1.73	-2		-1		1

(b) (i) Draw the graphs of $y = \sin x$ and $y = 2 \sin (x + 30^0)$ on the same set of axes (5 marks)

20. (b) (ii) From your graph find the roots of $2\sin(x + 30^0) - \sin x = 0$. (1 mark)

(c) Describe fully the transformation that maps the graph of $y = \sin x$ onto that of $y = 2\sin (x + 30^0)$. (2 marks)

21. The field book below gives measurements of a field. The distances are given in metres. AF = 100M

F 100 E40 80 60 D50 C40 40 20 B30 A

(a) Using a scale of 1cm represents 10m draw a map of the field with straight boundary edges.

(4 marks)

	(b)	(i) Find the area of the field in square metres.	(5 marks)
		(ii) Determine the error of the field in heateres	(1 morts)
		(ii) Determine the area of the field in hectares.	(1 mark)
22.	The fi	gure below is a right pyramid of rectangular base of length 12cm and width 9cm. anting edge has a length of 19.5cm	
		A B C D 12cm 9cm 19.5cm V	

(a) Determine the height of the pyramid.	(2 marks)
(b) Find the angle VA makes with base ABCD.	(3 marks)
(c) Find the angle VAD makes with VBC.	(3 marks)
(d) Calculate the volume of the pyramid.	(2 marks)

23. Two quantities P and n are connected by the equation $P = AK^n$ where A and K are constants.

n	2	4	6	8	10
p	9.8	19.4	37.4	74.0	144.4

(a) State the linear equation connecting P and n.

(2 marks)

(b) On the grid provided draw a suitable straight line.

(6 marks)

(c) Use your graph to estimate the value of A and K.

(2 marks)

- 24. A curve has the equation $y = 2x + 3x^2$
 - (a) (i) Identify and state the stationary points of the curve. (4 marks)

(ii) Sketch the curve (2 marks)

(b) Evaluate
$$\int_{-2/3}^{2} (2x + 3x^2) dx$$
 (4 marks)

121/2 MATHEMATICS ALT. A PAPER 2 JULY / AUGUST 2011

KIBWEZI SECONDARY SCHOOLS EXAMINATION Kenya Certificate of Secondary Education MATHEMATICS ALT. A PAPER 2

MARKING SCHEME

$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} -26 \\ -8 \end{bmatrix} $ $ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 4 \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 4 \end{bmatrix} $ $ x = 13 \text{ and } y = 4 $ $ 2. A = \frac{1}{2} \times 16 \times 13.5 \cos \theta = 36 $ $ 108 \cos \theta = \frac{36}{108} $ $ Cos^{-1} \theta = 70.5^{0} $ $ 3. x + y \le 840 \qquad (i)$ $ x \ge 240 \qquad (ii)$ $ y > 300 \qquad (iii)$ $ 4. \frac{2}{2} \frac{3}{22} \frac{5}{23} \frac{7}{25} \frac{7}{25} $ $ \frac{3}{3} \frac{32}{33} \frac{35}{35} \frac{5}{37} \frac{7}{35} \frac{7}{77} $ $ (b) \frac{4}{16} \text{ or } \frac{1}{4} \text{ Or } 2.25 $ $ B1 \text{Inverse matrix} $ $ A1 \text{both values } $ $ A2 \text{odd} \text{M1} \text{both values } $ $ A3 \text{M2} \text{O2} \text{M3} \text{M3} \text{M4} \text{M4} \text{O2} \text{M5} \text{M6} \text{M6} \text{M7} \text{M7} \text{M8} \text{M9} M9$	1. $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 21 \\ 34 \end{pmatrix}$	M1	√ matrix eqn
$x = 13 \text{ and } y = 4$ $x = 13 \text{ and } y = 4$ 03 $2. A = \frac{1}{2} \times 16 \times 13.5 \cos \theta = 36$ $108 \cos \theta = \frac{36}{108}$ $\cos \theta = \frac{36}{108}$ $\cos^{-1}\theta = 70.5^{0}$ $3. x + y \le 840 \qquad (i)$ $x \ge 240 \qquad (ii)$ $y > 300 \qquad (iii)$ $4. \frac{2}{2} \frac{3}{22} \frac{5}{23} \frac{7}{25}$ $\frac{3}{3} \frac{32}{33} \frac{35}{35} \frac{37}{55}$ $\frac{5}{5} \frac{52}{53} \frac{55}{55} \frac{57}{57}$ $\frac{7}{7} \frac{72}{72} \frac{73}{75} \frac{75}{77}$ $\frac{75}{7} \frac{75}{77} \frac{75}{77} \frac{75}{77}$ $\frac{1}{75} \frac{1}{75} $	$-\frac{1}{2} \begin{pmatrix} 2 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 2 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 21 \\ 34 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} -26 \\ -8 \end{pmatrix}$	M1	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			both values √
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$108 \cos \theta = 36$ $\cos \theta = 36$	M1	
3. $x + y \le 840$		A1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
4. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x \ge 240$ — (ii)	B1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		03	
	2 22 23 25 27 3 32 33 35 37 5 52 53 55 57		,
03	(b) $\frac{4}{16}$ or $\frac{1}{4}$ 0r 0.25	B1 03	

			Turn Over
5.	$a = \sqrt{\frac{s^2 + p}{p^2}} - q$		
	$(a+q)^2 = \sqrt{\frac{s^2+p}{p^2}}$	2.61	
	$(a+q)^2 == \frac{s^2 + p}{p^2}$	M1	squaring both sides
	$ \frac{P^{2}}{P^{2}} $ $ p^{2} (a + q)^{2} = s^{2} + p $ $ s^{2} = p^{2} (a + q)^{2} - p $	M1	
	$s = p^{2} (a + q)^{2} - p$ $s = \sqrt{p^{2} (a + q)^{2} - p}$	1	
	$S = V p^{2} (a+q)^{2} - p$	A1 3	
6.	$\frac{5}{2}(2a + 4d) = \frac{65}{2}$ (i) 2a + 4d = 13	B1	either eqn √
	5 ($a + 6d$) = 6 ($a + d$) a = 24d ————(ii)		
	2(24d) + 4d = 13 d = 0.25	M1 A1	√ substitution or equivalent
	a = 6	A1	
		4	
7.	$8 \times 5 = AX.4$	M1	
	\rightarrow AX = 8×5		
	= 10cm	A1	
	Radius = $\frac{1}{2}$ (10 + 4) = 7cm	B1	√radius
		3	
8.	2cm rep 40km		
	1cm rep 20km		
	1:2,000,000	B1	
	(b) $1 \text{cm}^2 \text{ rep } 400 \text{km}^2$? - 3505km^2		
	$\frac{3505}{123}$	3.51	
	400	M1	
	$= 8.7625 \text{cm}^2$	A1	
0	$x + x + 10 + 120^0 + 130^0 = 360^0$	3	
9.	$x + x + 10 + 120^{\circ} + 130^{\circ} = 360^{\circ}$ $2x + 260 = 360$		
	2x + 260 = 360 2x = 100		
	$x = 50^{0}$	B1	
	Total no. of animals = y	D1	
	$\frac{120}{120} \times y = 30$		
	360 360 360 360 360 360 360 360 360 360	M1	
	$360 \times 30 = y$		
	120 $y = 90^{0}$	A1	
	Camels $= \frac{60}{360} \times 90$		
	= 15 camels	B1	
		4	

10 5	~·		
10. $P = a + bQ^2$			
40 = a + 4b			
		D 1	1 .1
65 = a + 9b		B1	both eqn
-25 = -5b			
	h		
5 =	υ		
L + 20 = 40			
		D1	1 ,1 1
L = 20		B1	both values
P =	$20 + 5Q^2$		
_			
When Q =	5		
$\dot{\mathbf{p}} =$	$20 + 5(5^2)$		
P =	20 + 125		
	= 145	A 1	C.A.O
		3	
		J	
11. $x^2 - 6x + 6x$	$(\frac{1}{2})^2 + y^2 - 10y + (\frac{10}{2})^2 = 66 + 9 + 25$ - $6x + 9 + y^2 - 10y + 25 = 100$	M1	
2	$6x + 0 + x^2 + 10x + 25 = 100$	1/11	
X2 -	$-0x + 9 + y^2 - 10y + 25 = 100$		
(x -	$3)^2 + (y - 5)^2 = 10^2$		
`	Center (3, 5)	A1	
	Radius = 10 units	A1	
		3	
12. Locus of P	A B C		
		D1	D:
		B1	Bisecting
			any 2 lines
		B1	
			major arc ABC
		B1	√ shaded region P
			and labelled
			ลาน เลยปกรน
		3	
i			
13. 250,000 = :	$500,000 (1 - {}^{12}/_{100})^n$	M1	
	$500,000 (1 - {}^{12}/_{100})^n$ = 0.88 ⁿ	M1	
0.5	$=0.88^{\rm n}$	M1	
0.5		M1	

J.		
$n = \frac{\log 0.88}{100.5}$	3.71	66 22 1 1 1 1
$\log 0.5$	M1	"n" made subject
5.05		
n = 5.95 yrs	A1 3	acc. 6 yrs
	3	
10 10 0 1		
14. (a) $(2 + \frac{1}{4}x)^{10} = (2)^{10} (\frac{1}{4}x)^{0} + 10(2)^{9} (\frac{1}{4}x)^{1} + 45(2) (\frac{1}{4}x)^{2} +$		
$120 (2)^7 (\frac{1}{4} x)^3 + \dots$		
$= 1024 + 1280x + 720x^2 + 240x^3 + \dots$	B1	$\sqrt{\text{expression}}$
		_
(b) $\frac{1}{4} x = 0.025 \longrightarrow x = 0.1$		
$(2.025)^{10} = 1024 + 1280(0.1) + 720(0.1)^2 + 240(0.1)^3$	M1	√ substitution
= 1159.44		, , , , , , , , , , , , , , , , , , , ,
≥ 1159	<u>A1</u>	C.A.O
120 100 100 200	3	
15. Long diff = $40^0 + 40^0 = 80^0$	B1	
Dst btn A and B = 80° x 2 x 3.14 x 6370 cos 40		
	M1	
= 6816km	A1	
	3	
16. ₂		
ſ .		
$\int (x^2 - 4) dx$		
$\int_{0}^{\infty} (x^2 - 4) dx$ $\left(\frac{x^3}{3} - 4x\right)_{0}^{2}$		
$(x^3 - 4x)^2$		
$\left(\frac{3}{3} \right)_0$		
(8/2 - 8) - 0	M1	
8 - 24 - 0	IVII	
$\binom{8}{3} - 8 - 0$ $\frac{8 - 24}{3} - 0$		
-16/ ₃		
/3		
16/	D 1	
¹⁶ / ₃ sq. units	B1	
4		
$\int_{2}^{4} (x^2 - 4) dx$		
$\int_{2}^{\infty} (x - 4) dx$		
(2 ,)4		
$\left(\begin{array}{c} \frac{x^3}{3} - 4x \end{array}\right)_2^4$		
3 2		
$\left(\begin{array}{c} \frac{64}{3} - 16 \end{array}\right) - \left(\begin{array}{c} \frac{8}{3} - 8 \end{array}\right)$		
$\lfloor \frac{1}{3} \rfloor$		
$\frac{64-48}{3} + \frac{16}{3}$		
$\frac{}{3}$		
$\frac{16}{3} + \frac{16}{3}$		
$^{32}/_{3}$ sq. units	B1	
$ \begin{array}{c} 3 & 3 \\ & \frac{16}{3} + \frac{16}{3} \\ & \frac{32}{3} \text{ sq. units} \end{array} $		
Total area = ${}^{16}/_3 + {}^{32}/_3 = {}^{48}/_3 = 16$ sq. units.	A1	
	4	
	-	

4.		
17. Time = \underline{D}		
\overline{S} = $\frac{324}{60}$ \rightarrow 5 hrs 24 mins	D1	
7.00 + 5hrs 24 min	B1	
—→12.24pm	B1	
Car		
Time = $\frac{D}{S}$ $\rightarrow \frac{324}{80}$ \rightarrow 4hrs 3 mins	D.1	
	B1	
$9.00 + 4.03 \rightarrow 1303 \text{ hrs or } 1.03 \text{pm}$	B1	
(b) (i) Distance covered = 60 x 2hrs		
= 120km	B1	
(ii) Common dist to be covered 324 -120		
=204km		
Relative speed $= 60 + 80 = 140 \text{km/h}$	B1	
Time taken to cover common dist = $\underline{204}$ = 1.457hrs		
Time taken to cover common dist $= \frac{204}{140} = 1.457$ ms		
Or 1hr 27 min	M1	
	WII	
Time of meeting $= 9.00 + 1.27$		
= 10.27 am	A1	
(c) Distance from Kibwezi		
` '	N / 1	
$120 + 60 \times 1.457$	M1	
120 + 87.42 = 207.42km	A1	
- 2U/.42KIII		
	10	

18.

(a)									
X	-4	-3	-2	-1	0	1	2	3	4
У	-28	0	10	8	0	-8	-10	0	28

allow B1 for 4 $\sqrt{}$ B2

- SI
- **P**1
- $\begin{array}{l} \sqrt{\text{Scale}} \\ \sqrt{\text{Plotting}} \\ \sqrt{\text{Smooth curve}} \end{array}$ C1

		б.		T
	(c)		M1 A1	
		x = (-3, -1.1, 4)	L1 B1	$\sqrt{\text{line drawn}}$ allow B1 for 2
19.	(a)	\angle MLN = 40 ⁰ (Angles subtended by arc MN)	B1	
	(b)	OLK = $180 - 130$ 2 = 25^{0} (Base \angle s of isosceles \triangle) OLN = $90^{0} - (40^{0} + 25^{0})$ \angle subtended by diameter = 25^{0}	B1 B1	
	(c)	\angle LNP = \angle LKN = $40 + 25^{0}$ (Angle in alternate segment) = 65^{0}	B1 B1	
	(d)	\angle KNL = $\frac{1}{2}$ x 130 ⁰ (Subtended on centre and circumference) = 65 ⁰	B1	
		\angle KNP = $65^0 + 65^0 = 130^0$ \angle MPN = $180 - (130 - 40)$ Angles of a \triangle)	B1	
		$= 10^{0}$	B1	
	(e)	$(KM + 8) \times 8 = 10^{2}$ KM = 4.5cm	M1 A1	
			10	

20. (a)

X	0	30	60	90	120	150	180	210	240	270	300	330	360
Sin x		0.5		1		0.5		-0.5			-0.87		
$2 \sin{(x + 30^0)}$				1.73			-1			-1.73		0	

B2 all $\sqrt{\text{allow B1 for any 6 }\sqrt{}}$

```
b\ (i) 2\ 1\ 0\ -1\ -2\ 60^0\ 120^0\ 180^0\ 240^0\ 300^0\ 360^0\ x\ y Y=2sin\ (x+30^0)\ y=sin\ x SI P1 C1 P1 C1
```

(b)	(ii) $2 \sin (x + 30^0) = \sin x$ $x = 129^0 \text{ or } 309^0$	B1	(allow ± 30) both values √
(c)	Stretch parallel to y-axis s.f = 2, Followed by a translation vector $\left(-30^{\circ}\right)$	B1	
		B1	
		10	

	8.		<u> </u>
21.	A 2cm 6cm 4cm F	B1 B1 B1 B1	location of B Location of C location of D Location of E
	3cm B C 5cm		
(b)	Area of $\Delta A = \frac{1}{2} \times 20 \times 30$ = 300m^2 Area of trapezium B = $\frac{1}{2}$ ($30 + 50$) 40	M1	
	$= 1600 \text{m}^{2}$ Area of $\Delta C = \frac{1}{2} \times 40 \times 50$ $= 1000 \text{m}^{2}$	M1	
	Area of trapezium ACEF = $\frac{1}{2}$ x ($100 + 40$) 40 = 2800 m ² Total area = 5700 m ²	M1 A1	
	(ii) Area in hectares $= \frac{5700}{10000}$ $= 0.57ha$	B1	
		10	
22. (a)	AC = $\sqrt{12^2 + 9^2}$ = 15cm Height = $\sqrt{19.5^2 - 7.5^2}$ = $\sqrt{324}$ = 18cm	M1 A1	
(b)	$ \begin{array}{ccc} R & Sin \theta = \underline{18} \\ 19.5 & = 0.9231 \end{array} $	M1	
(c)	$\theta = \sin^{-1}(0.9231)$ $= 67.38^{0}$ $h = \sqrt{19.5^{2} - 4.5^{2}}$	M1 A1	
	= 18.97cm		
	4.5 4.5 $12^2 = 18.97^2 + 18.97^2 - 2(18.97) \cos \theta$ $144 = 719.7218 - 719.7218 \cos \theta$ $\cos \theta = 0.7999$	M1	
	$\theta = \cos^{-1}(0.7999)$ = 36.88 ⁰	M1 A1	
(d)	Vol = $\frac{1}{3}$ BA x h = $\frac{1}{3}$ (12 x 9) x 18 = 648 cm ³	M1 A1 10	

23.	(a)	Log P = n log K + log A	B2	
		n 2 A 6 8 10 log P 0.99 1.27 1.57 1.87 2.16	B2 B1	for all values at least 3 values
	(c)	$Log K = \frac{1.57 - 0.99}{6 - 2}$ = 0.145	M1	
		K = 1.4 $A = 0.7$	B1 B1	
			10	

$2.5 \ \ 2.0 \ \ 1.5 \ \ 1.0 \ \ 0.5 \ \ 0 \ \ 2 \ \ 4 \ \ 6 \ \ 8 \ \ 10 \ \ n \ \ Log \ P$

Scale

y axis 1cm rep. 0.25units

x –axis 1cm rep. 1 unit

S1

P1

L1

24.	(a)	dy		
		dx	= 2 + 6x	
		At sta	ationary point	dy = 0
			• •	$\frac{d}{dx}$

$$2 + 6x = 0$$

 $6x = -2$
 $x = -2/6$ or $-1/3$

$$y = 2 (^{-1}/_3) + 3(^{-1}/_3)^2$$
$$= ^{-2}/_3 + ^{1}/_3$$

$$= \frac{-1}{3}$$
The pt ($\frac{-1}{3}$, $\frac{-1}{3}$)
At $x = 0$ dy = 2

At
$$x = -1$$
 $\frac{dy}{dx} = -4$

(b)

 \therefore ($^{-1}/_3$, $^{-1}/_3$) is a minimum pt

M1

B1

B1 for both

$$y 5 4 3 2 1 0 -1 -2 -3 -4 -3 -2 -1 1 2 3 4 5$$
 $Y = 2x + 3x^2$

11,		
(c) $\int_{-2/3}^{2} (2x + 3x^2) dx$		
$\left(\frac{2x^2}{2} + \frac{3x^3}{3} \right)^2_{-2/3}$	M1	
$ \left(x^2 + 3x^2 \right)_{-2/3}^2 $ $ (2^2 + 2^3) - \left(-\frac{2}{3^2} + \frac{-2}{3^3} \right) $	M1	
$12 - (\frac{4}{9} - \frac{8}{27})$	M1	
$12-\frac{4}{27}$		
$=11^{23}/_{27}$	A1	
	10	