| Name | Index No              |
|------|-----------------------|
|      | Candidate's signature |
|      | Date                  |

233/1 CHEMISTRY PAPER 1 THEORY JULY 2011 2 HRS

KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 1 THEORY 2 HRS

# **INSTRUCTION TO CANDIDATES**

- Write your name and index number in the spaces provided .
- Answer ALL the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working must be clearly shown where necessary.

# **FOR EXAMINER'S USE ONLY**

| QUESTIONS | MAXIMUM SCORE | CANDIDATE'S SCORE |
|-----------|---------------|-------------------|
| 1 – 29    | 80            |                   |

|          | etron arrangemen                | t of ions $M^{3+}$ and $N^{2-}$ are 2 : 8  | s and 2.8.8 respectively.                              |       |
|----------|---------------------------------|--------------------------------------------|--------------------------------------------------------|-------|
| (a) Writ | e the electron arr              | angement of the elements.                  |                                                        | (2 r  |
| I        | M :                             |                                            | <u> </u>                                               |       |
| J        | N:                              |                                            |                                                        |       |
| (b) Writ | te the formula of               | the compound that would be                 | formed between M and N.                                | ( 1 r |
|          |                                 |                                            |                                                        |       |
|          |                                 |                                            |                                                        |       |
| (a) Com  | plete the table be              | elow.                                      |                                                        |       |
|          | Species                         | Number of neutrons                         | No. of electrons                                       |       |
|          | $^3$ $He^{2+}$                  |                                            |                                                        |       |
|          | $\mathbf{\Pi}\mathbf{e}^{2	op}$ |                                            |                                                        |       |
| (b) An e | element K has atc               | omic number 15. Given its tw               | yo ions K <sup>3-</sup> and K <sup>3+</sup> . Identify |       |
|          | stable ion. Expla               |                                            | o long it and it identify                              | (2 r  |
|          |                                 |                                            |                                                        |       |
|          |                                 |                                            |                                                        |       |
|          |                                 |                                            |                                                        |       |
|          |                                 |                                            |                                                        |       |
|          | C                               | overian 100 am 3 at 150C and 6             | 50mmHg. At what temperature                            | 0     |
|          |                                 | 150cm <sup>3</sup> if pressure is adjusted |                                                        | (3 r  |

| 4. | Using dots (.) and crosses (x) to represent outermost electrons, draw diagrams to show bonding in $H_3O^+$ and $CO$ (Atomic numbers $H=1,C=6,O=8$ )            | (2 marks) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5. | Element E has two isotopes. Two thirds of a sample of E consists of $^{33}$ E and one third is $^x$ E. Find x if the relative atomic mass of E is 32.          | (3 marks) |
| 6. | Name the following compounds:  (a) CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> (b) CH <sub>3</sub> CHBrCHBrCH <sub>2</sub> CH <sub>3</sub> | (3 marks) |
| 7. | (c) CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                                                         |           |

| (i) $\Delta H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (ii) $\Delta H_3$<br>(b) Write an expression for $\Delta H_3$ in terms of $\Delta H_1$ and $\Delta H_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| (b) Write an expression for $\Delta H_3$ in terms of $\Delta H_1$ and $\Delta H_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| A minter a section and a least section and a section of the sectio |             |
| A mixture containing equal volumes of hydrogen and carbon (IV) oxide gases was introduced at one end of a tube as shown below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Mixture of H <sub>2</sub> and CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Which gas would be detected at point Y first. Explain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2 marks    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| The catalytic oxidation of sulphur (IV) oxide is shown below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| $2SO_{2(s)} + O_{2(g)}$ $2SO_{3(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2 marks    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( 2 IIIaIKS |
| Explain how pressure increase would affect the yield of SO <sub>3(g)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |

concentration were allowed to decompose separately. In one case manganese (IV) oxide was added to the hydrogen peroxide.

Volume of gas I II Time

| T1: 1                            | 111                                 |                                   | -1-1- Tl 1-44                     | 1.                 | 4         |             | 4 1                       |
|----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------|-----------|-------------|---------------------------|
| _                                | of the elements.                    | art of the periodic t             | able. The lett                    | ers do             | not repr  | esent the a | actual                    |
|                                  |                                     |                                   |                                   |                    |           |             |                           |
|                                  |                                     |                                   | В                                 |                    |           | <u> </u>    |                           |
|                                  |                                     |                                   | C                                 |                    | D         | E           |                           |
|                                  | A                                   |                                   |                                   |                    |           |             |                           |
|                                  | Λ                                   |                                   |                                   |                    |           |             |                           |
| (a) Selec                        | t                                   |                                   |                                   |                    |           |             |                           |
| (i                               | i) Two elements                     | in the same group                 |                                   |                    |           |             |                           |
|                                  |                                     |                                   |                                   |                    |           |             |                           |
|                                  |                                     |                                   |                                   |                    |           |             |                           |
|                                  |                                     |                                   |                                   |                    |           |             |                           |
| (1                               | ii) Element with                    | the largest atomic                | radius                            |                    |           |             |                           |
| (i                               | iii) Most reactive                  | e non-metal                       |                                   |                    |           |             | (3                        |
|                                  |                                     |                                   |                                   | 2                  |           | h alactron  |                           |
|                                  |                                     | position of elemen                | nt F which for                    | ms F <sup>3-</sup> | ions wit  | ii electron |                           |
| config                           | guration 2:8:8                      |                                   |                                   |                    |           |             | (1                        |
| config                           | guration 2:8:8                      |                                   |                                   |                    |           |             | (1                        |
| config                           | guration 2:8:8<br>e below shows the | ne number of drop  Cold water     | s of soap solut                   | tion ne            |           |             | (1                        |
| config                           | guration 2:8:8<br>e below shows the | Cold water 5                      | s of soap solution Heated water 5 | tion ne            |           |             | (1                        |
| config                           | Sample A B                          | Cold water  5 6                   | s of soap solution Heated water 5 | tion ne            |           |             | (1                        |
| config                           | guration 2:8:8<br>e below shows the | Cold water 5                      | s of soap solution Heated water 5 | tion ne            |           |             | (1                        |
| config<br>The table              | Sample A B                          | Cold water  5 6 2                 | s of soap solution Heated water 5 | tion ne            |           |             | (1                        |
| config The table  (a) Identified | Sample A B C                        | Cold water 5 6 2  Kely to be in:- | Heated water 5 2 2                | tion ne            |           |             | (1 n 10cm <sup>3</sup> of |
| config The table  (a) Ident      | Sample A B C                        | Cold water 5 6 2  Kely to be in:- | Heated water 5 2 2                | tion ne            |           |             | (1 n 10cm <sup>3</sup> of |
| config The table  (a) Ident      | Sample A B C                        | Cold water 5 6 2  Kely to be in:- | Heated water 5 2 2                | tion ne            |           |             | (1 n 10cm <sup>3</sup> of |
| config The table  (a) Ident      | Sample A B C                        | Cold water 5 6 2  Kely to be in:- | Heated water 5 2 2 2              | er                 | eded to l |             | (1 n 10cm <sup>3</sup> of |

| 13. | A compound has an empirical formula C <sub>3</sub> H <sub>6</sub> O and relative formula mass of 116. (a) Find its molecular formula. | (2 1 )          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | (C = 12, O = 16, H = 1)                                                                                                               | (2 marks)       |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     | (b) Find the percentage composition of oxygen in the compound.                                                                        | (1 mark)        |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
| 14. | Study the flow diagram below for the preparation of copper carbonate and answer the q                                                 | uestions below. |
|     | $CuO_{(s)} \xrightarrow{X} Cu(NO_3)_{2(aq)} \xrightarrow{L} CuCO_{3(s)}$ $Step II$                                                    |                 |
|     | (a) Identify reagents                                                                                                                 | (2 marks)       |
|     | X                                                                                                                                     |                 |
|     |                                                                                                                                       | (1 1)           |
|     | (b) Name the type of reaction exhibited in step I.                                                                                    | (1 mark)        |
|     | (c) Write an ionic equation for the reaction in step II.                                                                              | (1 mark)        |
|     |                                                                                                                                       |                 |
| 15  | The comparative charge heless is used in the chargeston lebeston.                                                                     |                 |
| 15. | The apparatus shown below is used in the chemistry laboratory.                                                                        |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     |                                                                                                                                       |                 |
|     | (a) Name the apparatus                                                                                                                | (1 mark)        |

| —————————————————————————————————————— | now the shape of the apparatus is suitable for its function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
| The table below gives                  | the rate of decay for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | radioactive element (X)                                                |       |
|                                        | Number of days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass(g)                                                                |       |
|                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 384                                                                    |       |
|                                        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                                     |       |
| Calculate the half-life of             | of the radioactive elem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent (X)                                                                | (2 ma |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |       |
| The general formula fo                 | or homologous series o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $for ganic compound is C_nH_{2n+1}OH$                                  |       |
| _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                      | ( 2 m |
| _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f organic compound is $C_nH_{2n+1}$ OH ne fifth member of this series. | ( 2 m |
| _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                      | ( 2 m |
| _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                      | ( 2 m |
| _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                      | ( 2 m |
| (a) Give the name and                  | structural formula of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne fifth member of this series.                                        |       |
| (a) Give the name and                  | structural formula of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                      | ( 2 m |
| (a) Give the name and                  | structural formula of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne fifth member of this series.                                        |       |
| (a) Give the name and                  | structural formula of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne fifth member of this series.                                        |       |
| (a) Give the name and                  | structural formula of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne fifth member of this series.                                        |       |
| (a) Give the name and                  | structural formula of the complete combined and the complete combined at the combined at the complete combined at the | ne fifth member of this series.                                        |       |

(b) Use the information provided below to calculate the molar enthalpy change of solution of an ionic solid NX:

| NX <sub>(aq)</sub> |         | $N^{+}_{(g)} \ + \ X^{\text{-}}_{(g)}$ | : $\Delta H_1 = +766 \text{ kJmol}^{-1}$ |           |
|--------------------|---------|----------------------------------------|------------------------------------------|-----------|
| $N^+(g)$           |         | $N^+$ (aq)                             | : $\Delta H_2 = -390 \text{ kJmol}^{-1}$ |           |
| $X^{-}_{(g)}$      | <b></b> | $X^{\text{-}}_{(aq)}$ :                | $\Delta H_3 = -381 \text{ kJmol}^{-1}$   | (2 marks) |

19. Study the set up shown below and answer the questions that follow.



(a) Name the method of gas collection shown above and state a gas collected by the above method. (2 marks)

Method of gas collection \_\_\_\_\_

Gas \_\_\_\_\_

(b) Which property of gas makes it possible to be collected by the method shown above. (1 mark)

20.  $20\text{cm}^3$  of a solution containing 4g per litre of sodium hydroxide was neutralized by  $8\text{cm}^3$  of dilute sulphuric (VI) acid. Calculate the concentration of sulphuric (VI) acid in moles per litre (Na = 23, O = 16 and H = 1)

21. (a) Complete the diagram below to show how a sample of aqueous solution of hydrogen chloride can be prepared in the laboratory . (1 mark)

| $HCl(g) \longrightarrow$ | • |
|--------------------------|---|



(b) A few drops of lead (II) nitrate were added to the sample of the solution obtained above and the mixture warmed. State the observation made.

(1 mark)

22. Study the diagram below and answer the questions that follow.



Identify:

- (i) Solid X
- (ii) Yellow solid \_\_\_\_\_
- (iii) White precipitate \_\_\_\_\_\_ (3 marks)
- (b) What would have been observed if excess sodium hydroxide was added to the white precipitate.

  (1 mark)

| 23.       | Calculate 1 | the ox | idation | number   | of sul | phur in | $S_2O_3^{2-}$         |
|-----------|-------------|--------|---------|----------|--------|---------|-----------------------|
| <i></i> . | Cuicuitute  | uic on | idution | Hullioti | or bur | pnu m   | <b>D</b> 2 <b>O</b> 3 |

24. The table below shows the pH values of solution I, II, III and IV.

| Solution | I | II | III | IV |
|----------|---|----|-----|----|
| pН       | 2 | 7  | 11  | 14 |

- (a) Which solution is likely to be  $Ca(OH)_{2(aq)}$  (1 mark)
- (b) Select two solutions in which a sample of Al<sub>2</sub>O<sub>3</sub> is likely to dissolve. Give a reason for your answer.

(2 marks)

| <br> | <br> |  |
|------|------|--|
|      |      |  |

25. A polymer has the following structure

A sample of this polymer has a molecular mass of 5194. Determine the number of monomers in the polymer (H = 1, C = 12, H = 14)

(2 mark)

| extinguishers.                               |                                                 | ( 2 n                  |
|----------------------------------------------|-------------------------------------------------|------------------------|
|                                              |                                                 |                        |
|                                              |                                                 |                        |
|                                              |                                                 |                        |
|                                              |                                                 |                        |
| Use the following half co                    | ell standard electrode potentials to answer the | questions that follow  |
| Ose the following half ec                    | -                                               | questions that follow. |
| $J^{2+}_{(aq)} + 2e \longrightarrow J_{(s)}$ | $E^{\theta}$ -0.76v                             |                        |
| J (aq) + 2e $J$ (s<br>$K^{2+}$ (aq) + 2e $K$ | ,                                               |                        |
| _                                            |                                                 |                        |
| $L^{2+}_{(aq)} + 2e \longrightarrow L_0$     |                                                 |                        |
| $M^{2+}(g) + 2e \longrightarrow M$           | +0.34v                                          |                        |
| (a) Select the two half ce                   | ells which when combined give the largest e.m   | ı.f. (1 n              |
| (a) Select the two half ce                   | ells which when combined give the largest e.m   | ı.f. (1 n              |
|                                              |                                                 |                        |
| (a) Select the two half ce                   |                                                 |                        |
|                                              |                                                 |                        |
|                                              |                                                 |                        |
|                                              |                                                 | (1 n                   |
|                                              |                                                 |                        |
|                                              |                                                 |                        |
|                                              | f the cell in (a) above.                        |                        |

|                   |                  | ly some properties of                                                    |                               |          |
|-------------------|------------------|--------------------------------------------------------------------------|-------------------------------|----------|
| Moist iron wool   | Beaker Water     | Test tube                                                                |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
| State and explain | two observation  | s that would be made                                                     | at the end of one week.       | (21      |
|                   |                  |                                                                          |                               |          |
| current on pure w | ater and copper  | e set up that were use<br>(II) sulphate slution.<br>Copper (II) sulphate | d to study the effect of an e | electric |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
| State and explain | the observations | s made when each exp                                                     | periment was started.         | (31      |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |
|                   |                  |                                                                          |                               |          |

# KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 1

## **MARKING SCHEME**

1. (a)  $M: 2: 8: 3 \sqrt{1}$  $N: 2: 8: 6 \sqrt{1}$ 

(b)  $M_2N_3\sqrt{1}$  (3)

2. (a) Number of neutrons  $-1\sqrt{\frac{1}{2}}$ Number of electrons  $-0\sqrt{\frac{1}{2}}$ 

(b)  $K^{3-}\sqrt{1}$ : Has completely filled outer most energy level  $\sqrt{1}$  (3)

 $3. \qquad \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ 

 $T_{2} = \frac{P_{2}V_{2}T_{1}}{P_{1}V_{1}} \sqrt{1}$   $= \frac{680 \times 150 \times 258}{650 \times 100} \sqrt{1}$ 

 $= 404.86K \sqrt{1}$ Or = 131.86°C (3)

4. (a)  $H_3O^+$  O H H H  $\sqrt{1}$ 

x– Oxygen electron.– Hydrogen electron

(b) CO CO 
$$\sqrt{1}$$

x : Oxygen electrons

.: Carbon electron

5. 
$$\frac{2}{3}x \frac{33}{3} + \frac{1}{3}x = 32\sqrt{1}$$
$$22 + \frac{1}{3}x = 32$$

$$^{1}/_{3}x = 32 - 22 \quad \sqrt{1}$$

$$^{1}/_{3}x = 10$$

$$x = 30 \sqrt{1}$$

- 6. (a) butane  $\sqrt{1}$ 
  - (b) 2, 3- dibromopentane  $\sqrt{1}$
  - (c) Pentan-1-ol  $\sqrt{1}$

(3)

(3)

7. (a)  $\Delta H_1$  – Activation energy  $\sqrt{1}$   $\Delta H_3$  – Enthalpy of combustion  $\sqrt{1}$ 

(b) 
$$\Delta H_3 = \Delta H_1 + \Delta H_2 \sqrt{1}$$

(3)

(2)

- 8. Hydrogen gas  $\sqrt{1}$ 
  - It is lighter than  $\sqrt{\frac{1}{2}}$  CO<sub>2</sub>. Hence moves faster  $\sqrt{\frac{1}{2}}$
- 9. Yield increases √
  - Forward reaction is favoured  $\sqrt{\ }$  equilibrium shift to the right. (2)
- 10. I √1

Because manganese (IV)  $\sqrt{1}$  oxide catalyses the reaction. Hence increasing its rate. (2)

- 11. (a) (i) B and C  $\sqrt{1}$ 
  - (ii) A √1
  - (iii) E √1
  - (b)  $F \sqrt{1}$  (between C and D)

(4)

- 12. (a)  $A SO_4^{2-} \sqrt{B HCO_3^{-}} \sqrt{A}$ 
  - (b) (1) Boiling  $\sqrt{\frac{1}{2}}$ 
    - (2) Distillation  $\sqrt{\frac{1}{2}}$
    - (3) Addition of sodium carbonate

13. (a) Mass of comp = 
$$3 \times 12 + 6 + 16$$
  
=  $36 + 6 + 16$   
=  $58 \sqrt{\frac{1}{2}}$ 

(3)

n = 
$$\frac{116}{58}$$
 =  $2\sqrt{\frac{1}{2}}$   
M.F =  $(C_3H_6O)_2\sqrt{\frac{1}{2}}$   
=  $C_6H_{12}O_2\sqrt{\frac{1}{2}}$  (3)

(b) O 
$$\longrightarrow$$
 16  
Percent of Oxygen =  $^{16}/_{58} \times 100\% \sqrt{\frac{1}{2}}$   
= 27.586%  $\sqrt{\frac{1}{2}}$ 

- 14. (a) X Nitric (V) acid  $\sqrt{1}$  L Sodium carbonate solution /  $K_2CO_3$  solution / ammonium carbonate solution
  - (b) Neutralization reaction  $\sqrt{1}$

(c) 
$$Cu^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \longrightarrow CuCO_{3(s)} \sqrt{1}$$
 (4)

- 15. (a) Conical flask  $\sqrt{1}$ 
  - (b) It has a wide base  $\sqrt{\frac{1}{2}}$  and narrow  $\sqrt{\frac{1}{2}}$  mouth to avoid spilling of solution when swirled (2)
- 16.  $384g \underline{x} 192g \underline{x} 96g \underline{x} 48g$   $3x = 270 \text{ days } \sqrt{1}$  x = 90 days  $\therefore \text{ Half-life of the element : } 90 \text{ days } \sqrt{1}$ (2)
- 17. (a) (i) Pentan-1-ol  $\sqrt{1}$

(b) 
$$2C_5H_{11}OH_{(l)} + 15O_{2(g)}$$
 Heat  $10CO_{2(g)} + 12H_2O_{(g)}$   $\sqrt{1}$ 

18. (a) Molar enthalpy of solution is the enthalpy change that occurs when one mole of a substance dissolves in a solvent to give an infinitely dilute solution  $\sqrt{1}$ .

(b) 
$$\Delta H \text{ solution} = \Delta H_1 + \Delta H_2 + \Delta H_3$$
  
=  $+766 - 390 - 381 \sqrt{1}$   
=  $-5 \text{kJmol}^{-1} \sqrt{1}$ 

- 19. (a) Downward delivery / upward displacement of Chlorine / SO<sub>2</sub> / CO<sub>2</sub>
  - (b) Gas is denser than air

20. 
$$2NaOH_{(aq)} + H_2SO_{4(aq)}$$
  $\longrightarrow$   $Na_2SO_{4(aq)} + 2H_2O_{(1)}$   $NaOH: Molarity = \frac{4g/L}{40g} = 0.1 M  $\sqrt[4]{\frac{1}{2}}$$ 

No. of moles in  $20\text{cm}^3$  of NaOH cont.  $^{20}/_{1000}$  x 0.1 moles No. of moles in  $8\text{cm}^3$  of  $H_2SO_4$  cont.  $^{1}\!\!/_2$  x  $^{20}/_{1000}$  x 0.1M  $^{1}\!\!/_2$   $1000\text{cm}^3$  will be 10  $\frac{1000\text{cm}^3}{2}$  x  $\frac{1}{2}$  x  $\frac{20}{1000}$  x  $\frac{0.1}{8}$  M  $^{1}\!\!/_2$   $\frac{1}{2}$  molar = 0.125 M  $^{1}\!\!/_2$ 



- (b) White precipitate was  $\sqrt{\frac{1}{2}}$  formed which dissolved on warming  $\sqrt{\frac{1}{2}}$  (2)
- 22. (a) (i) Lead (II) nitrate √1 (ii) Lead (II) oxide √1 (iii) Lead (II) hydroxide √1
  - (b) The precipitate disappears  $\sqrt{1}$  due to the formation of [ Pb (OH)<sub>4</sub> ]<sup>2-</sup> complex Or the precipitate disappears due to formation of complex ions. (4)

23. 
$$2s + 3x - 2 = -2$$
  
 $2s + -6 = -2$   
 $2s - 6 + 6 = -2 + 6 \sqrt{2s} = +4$   
 $S = +2 \sqrt{2s}$ 

- 24. (a) III  $\sqrt{1}$ 
  - (b) IV  $\sqrt{\frac{1}{2}}$  and I  $\sqrt{1}$ It is amphoteric  $\sqrt{1}$  (3)

25. Monomer 
$$CH = CH_2 \sqrt{ }$$
 CH

Mass of monomer

$$= 12 + 14 + 12 + 1 + 12 + 2$$

$$= 26 + 13 + 14$$

$$= 26 + 27 \quad \sqrt{\phantom{0}}$$

$$= 53$$

No. of monomer  $=\frac{5194}{53}\sqrt{\phantom{0}}$ 

$$= 98 \text{ manomers}$$
 (3)

- 26. It doesn't support burning √
  - It is denser than air  $\sqrt{\phantom{a}}$
- 27. (a) J and L half cells  $\sqrt{1}$

(b) e.m.f = 
$$0.84 - (-0.76) \sqrt{\frac{1}{2}}$$
  
=  $0.84 + 0.76 \sqrt{\frac{1}{2}}$   
=  $1.6v$ 

(c) 
$$J(s)/J^{2+}_{(aq)}//L^{2+}_{(aq)}/L_{(s)}\sqrt{1}$$
 (3)

- 28. -Iron wool would turn brownish due to oxidation  $\sqrt{1}$ 
  - Water level in the test-tube will rise : Due to consumption of oxygen  $\sqrt{1}$  (2)
- 29. In pure water  $\sqrt{\frac{1}{2}}$  bulb does not light because no ions present  $\sqrt{\frac{1}{2}}$  Or

(1 mark)

(2)

Pure water is a non-electrolyte

In copper (II) sulphate bulb  $\sqrt{\frac{1}{2}}$  lights because free ions are present or

Copper (II) sulphate is a good electrolyte and has mobile ions.

(3 marks)

| Name | Index No              |
|------|-----------------------|
|      | Candidate's signature |
|      | Date                  |

233/2 CHEMISTRY PAPER 2 THEORY JULY 2011 2 HRS

KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 2 THEORY 2 HRS

## **INSTRUCTION TO CANDIDATES**

- Write your name and index number in the spaces provided above.
- Answer ALL the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.

## FOR EXAMINER'S USE ONLY

| QUESTIONS  | MAXIMUM SCORE | CANDIDATE'S SCORE |
|------------|---------------|-------------------|
| 1          | 12            |                   |
| 2          | 15            |                   |
| 3          | 11            |                   |
| 4          | 12            |                   |
| 5          | 10            |                   |
| 6          | 10            |                   |
| 7          | 10            |                   |
| TOTAL CORE | 80            |                   |

| Element                            | Atomic number                                      | Melting point ( <sup>0</sup> C)              |        |
|------------------------------------|----------------------------------------------------|----------------------------------------------|--------|
| P                                  | 11                                                 | 97.8                                         |        |
| Q                                  | 13                                                 | 660                                          |        |
| R                                  | 14                                                 | 1410                                         |        |
| S                                  | 17                                                 | -40.6                                        |        |
| T                                  | 19                                                 | 63.7                                         |        |
| (a) Write the electr               | on arrangements for the                            | ne ions formed by elements Q and S.          | ( 2 ma |
| (b) Select an eleme                |                                                    |                                              |        |
| (1) The mos                        | st reactive non-metal _                            |                                              | ( 1 ma |
| (ii) Can rea                       | ct with both acids and                             | bases                                        | ( 1 ma |
| (c) In which period                | d of the periodic table                            | does element T belong?                       | ( 1 ma |
| (d) Element T loses                | s its outermost electroi                           | n more readily than P. Explain.              | ( 2 ma |
|                                    |                                                    |                                              | ( 2 ma |
| (e) Using dots (.) a               |                                                    | sent outermost electrons show bonding in the | ( 2 ma |
| (e) Using dots (.) a               | nd crosses (x) to repre                            | sent outermost electrons show bonding in the |        |
| (e) Using dots (.) a               | nd crosses (x) to repre                            | sent outermost electrons show bonding in the |        |
| (e) Using dots (.) a compound form | nd crosses (x) to repre-<br>ned when R reacts with | sent outermost electrons show bonding in the |        |

| a) Name             | the substances that pass                                                                 | through L, M and N.                                           |                                    | ( 1½ m       |
|---------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|--------------|
|                     |                                                                                          |                                                               |                                    |              |
|                     |                                                                                          | stances that pass through L a                                 | and M respectively L. (            | 1 mark)      |
| T1                  | hrough L:                                                                                |                                                               |                                    |              |
|                     |                                                                                          |                                                               |                                    |              |
|                     |                                                                                          |                                                               |                                    |              |
| <br>Тl              | brough M ·                                                                               |                                                               |                                    |              |
| Tł                  | nrough M:                                                                                |                                                               |                                    |              |
| Tì                  | nrough M:                                                                                |                                                               |                                    |              |
| c) The p            | properties of the two allot                                                              | ropes of sulphur represented                                  |                                    | given        |
| c) The p            | properties of the two allot                                                              | ropes of sulphur represented<br>d answer the questions that f |                                    | given        |
| c) The p            | properties of the two allot table below. Study it an                                     | d answer the questions that f                                 | follow.                            | given        |
| c) The p            | properties of the two allot table below. Study it an Appearance                          | d answer the questions that f  A  Is bright yellow            | B Is pale yellow                   | given        |
| c ) The p           | Appearance Density gcm <sup>-3</sup> M.P (°C)                                            | d answer the questions that f                                 | follow.                            | given        |
| c) The p            | Appearance Density gcm <sup>-3</sup>                                                     | A Is bright yellow 1.98                                       | B Is pale yellow 2.08              | given        |
| c) The p<br>in the  | Appearance Density gcm <sup>-3</sup> M.P (°C) Stability (°C)                             | A Is bright yellow 1.98 119 Above 96 d B.                     | B Is pale yellow 2.08 113          |              |
| c) The p<br>in the  | Appearance Density gcm <sup>-3</sup> M.P (°C) Stability (°C)  Identify allotropes A an A | A Is bright yellow 1.98 119 Above 96                          | B Is pale yellow 2.08 113 Below 96 |              |
| c ) The p<br>in the | Appearance Density gcm <sup>-3</sup> M.P (°C) Stability (°C)  Identify allotropes A an A | A Is bright yellow 1.98 119 Above 96 d B.                     | B Is pale yellow 2.08 113 Below 96 | given (1 mar |

)

The diagram below represents the extraction of sulphur by Frasch process.

Study the diagram and answer the questions that follow.

L N M Sulphur deposists

2.

| (d) Give any two uses of sulphur.                                                                                                                                                                                                                                                                             | (1 mark)    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                               |             |
| (e) The equation below shows the oxidation of sulphur (IV) oxide to sulphur (VI) oxide in the contact process $2SO_{2(g)} + O_{2(g)} \qquad \qquad \qquad 2SO_{3(g)} \; ; \Delta H = -196kJ$                                                                                                                  |             |
| (i) Name a catalyst for this reaction                                                                                                                                                                                                                                                                         | (1 mark)    |
| (ii) State and explain the effect on the yield of sulphur (VI) oxide when I) Pressure is increased.                                                                                                                                                                                                           | (1½ mks)    |
| II) Temperature is increased.                                                                                                                                                                                                                                                                                 | ( 1 ½ mks ) |
| (iii) Describe how sulphuric (VI) acid is formed from sulphur (VI) oxide in the contact process. Use equations where possible.                                                                                                                                                                                | (2½ mks)    |
|                                                                                                                                                                                                                                                                                                               |             |
| (f) State one environmental effect of having sulphur (VI) oxide in the atmosphere.                                                                                                                                                                                                                            | ( 1 mark )  |
| (g) If all the sulphur (VI) oxide produced was absorbed in concentrated sulphuric (VI) at to form oleum.  H <sub>2</sub> SO <sub>4(I)</sub> + SO <sub>3(g)</sub> → H <sub>2</sub> S <sub>2</sub> O <sub>7(I)</sub> Calculate the mass of oleum that was produced if 1050kg of SO <sub>3(g)</sub> are produced |             |
| (S = 32, O = 16, H = 1)                                                                                                                                                                                                                                                                                       | (2 marks)   |

| (a) Identify gas Y                                                                                                            | (1 mark  |
|-------------------------------------------------------------------------------------------------------------------------------|----------|
| (b) Write a balanced equation for the reaction that produces gas Y.                                                           | (1 mark  |
|                                                                                                                               |          |
| (c ) Describe a confirmatory test for gas Y.                                                                                  | ( 1 mark |
|                                                                                                                               |          |
| (d) State one property of gas Y which makes it possible for the gas to be collected as shown in the diagram.                  | ( 1 mark |
|                                                                                                                               |          |
| (e) State two uses of gas Y.                                                                                                  | (2 mark  |
|                                                                                                                               |          |
| (f) A mixture of zinc (II) carbonate and potassium chloride was shaken with excess water and filtered. Which substance is the |          |
| (i) Residue                                                                                                                   | (1 mark  |
| (ii) Filtrate                                                                                                                 | (1 mark  |

The diagram below shows the production of gas Y. Study it and answer the questions that follow.

Moist asbestos wool Boiling tube Heat Heat Iron fillings Gas Y Water

3.

| ,                                                                       | served.              | .B-7 v     | test tul | e.         |            |          | (2        |
|-------------------------------------------------------------------------|----------------------|------------|----------|------------|------------|----------|-----------|
|                                                                         |                      |            |          |            |            |          |           |
| II) Write an equation                                                   | for the a            | bove re    | action.  |            |            |          | (1        |
|                                                                         |                      |            |          |            |            |          |           |
| Seven portions of 50cm <sup>3</sup> of 2M solu                          | tion hyd             | roxide v   | vere pla | nced in ar | insulate   | ed beake | er and th |
| temperatures noted. Different quant                                     | tities of a          | queous     | hydroc   | hloric aci | d were a   | added in | each      |
| beaker (All at the same temperature change in each case was then determ |                      |            |          |            |            |          |           |
|                                                                         |                      |            |          | 1          |            |          | 1         |
| Beaker Volume of NaOH <sub>(aq)</sub> (cm <sup>3</sup> )                | 50.0                 | 50.0       | 50.0     | 50.0       | 50.0       | 50.0     | 7<br>50.0 |
| Volume of HCl <sub>(aq)</sub> cm <sup>3</sup>                           | 20.0                 | 40.0       | 60.0     | 80.0       | 100.       | 120.0    | 140.0     |
| Heat evolved (kJ)                                                       | 1.1                  | 2.2        | 3.4      | 4.5        | 5.6        | 5.6      | 5.6       |
| Tiour evolved (m)                                                       | 1111                 | 1 2.2      | 5.1      | 1.10       | 10.0       | 1 2.0    | 0.0       |
| (a) Plot a graph of heat change ( y a                                   | xis ) agai           | nst the    | volume   | of hydro   | chloric a  | acid.    | (3        |
|                                                                         |                      |            |          |            |            |          |           |
| (h) Determine the number of males                                       | : <b>5</b> 03        | S of 41. o |          | 1          | مندرات ما  |          | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | le solutio | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | le solutio | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | le solutio | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | le solutio | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |
| (b) Determine the number of moles                                       | in 50cm <sup>3</sup> | of the     | sodium   | hydroxid   | e solutio  | on.      | (1        |

| (d) What is the concentration in moles per litre of the hydrochloric acid?                                                                                        | (2 marks)                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |
| (e) Calculate the molar heat of neutralization for the reaction.                                                                                                  | (2 marks)                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |
| (f) Draw a labelled energy level diagram for the neutralization reaction of aqueous sodium hydroxide and hydrochloric acid.                                       | (2 marks)                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |
| The diagram below shows the Downs cell used in the extraction of sodium metal from sodium chloride NaCl.  Sodium Molten sodium chloride Carbon anode Iron cathode |                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   | (e) Calculate the molar heat of neutralization for the reaction.  (f) Draw a labelled energy level diagram for the neutralization reaction of aqueous sodium hydroxide and hydrochloric acid.  The diagram below shows the Downs cell used in the extraction of sodium metal from sodium chloride NaCl. |

| about 600°C. State briefly how this is achieved.                                                                               | ( 1mark  |
|--------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                |          |
| (ii) Write down the equations of the reactions that occur at the electrodes.                                                   | ( 1 mark |
| iii) Name one use of by-product obtained in this process.                                                                      | (1 mark  |
| (iv) Name the ore from which aluminium is (i) Extracted.                                                                       | ( 1 mark |
| (ii) Explain how the ore is purified giving equations where necessary.                                                         | ( 3 mark |
|                                                                                                                                |          |
| (iii) The ore free of impurities is electrolysed at 900°C yet its melting point is above 2000°C. Explain how this is achieved. | ( 1 mark |
| (iv) The anode used in the cell for extraction of aluminium, needs constant replacement . Explain why?                         | ( 1 mark |

| (a) What is meant by hydrocarbons?                           | ( 1 ma                |
|--------------------------------------------------------------|-----------------------|
| (b) Draw and name the third member of the alkene home        | ologous series. (2 ma |
| Structure                                                    |                       |
| Name                                                         |                       |
|                                                              |                       |
| (c ) Study the flow chart below and answer the question      | s that follow.        |
| H <sub>2</sub> O CH <sub>3</sub> C - OCH <sub>3</sub>        |                       |
| Step II                                                      |                       |
| Products Step VI CH <sub>3</sub> OH Step 1 Na <sub>(s)</sub> | H <sub>2</sub> (g)    |
| Step III                                                     | C                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$        | <u></u>               |
| Process X Polymer A                                          |                       |
| (c ) Name; (i) The type of reaction that occurs in step II.  | ( 1 ma                |
|                                                              |                       |
| (ii) Substance B                                             | (1 ma                 |

| reagent and the conditions i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |               |                                                                                                                                                                                                                                                                                                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ent :                        | necessar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y for t       | the reac      | ction in      | step (IV.     |               | (2 r                                                                                                                                                                                                                                                                                                          |
| itions:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |               |                                                                                                                                                                                                                                                                                                               |
| _                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |               | _ (1 n                                                                                                                                                                                                                                                                                                        |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of wa         | iter to r     | nake a s      | aturated      | solution.     | (11                                                                                                                                                                                                                                                                                                           |
| <b>C</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |               |                                                                                                                                                                                                                                                                                                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |               | _                                                                                                                                                                                                                                                                                                             |
|                              | Sive one disadvantage of the Sive of the Siv | ame process X  Sive one disadvantage of the continued use of polymer A.  50g of a salt X were added to 100g of water to make a saturated solution. It is meant by a saturated solution?  Solution below gives the solubilities of salt X at different temperatures.  Temperature (°C)  12  20  28  36  44  52 |

| <ul><li>(ii) Using the graph,</li><li>I) Determine the solubility of salt X at 15°C.</li></ul>                                                                 | (1 mark)  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| II) Determine the mass of salt X that remained undissolved given that 80g of salt X were added to 100cm <sup>3</sup> of water and warmed to 40°C.              | (2 marks) |
|                                                                                                                                                                |           |
| (c) Determine the molar concentration of salt X at 15°C. (Assume that there is no change in density of water at this temperature; molar mass of salt X is 101) | (3 marks) |

233/2 CHEMISTRY PAPER 2 THEORY JULY 2011

# KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 2 THEORY

## **MARKING SCHEME**

- 1. (a) Q<sup>3+</sup> 2.8 S<sup>-</sup> 2.8.8
  - (b) (i) Most reactive non metal Q(ii) Element Q (amphoteric )
  - (c) Period four (4)  $\sqrt{(1 \text{ mark})}$
  - (d) T has a larger atomic radius than P  $\sqrt{1}$ . Its outermost electron is not tightly held by the nucleus  $\sqrt{1}$  (1 marks)
  - (e) SSSRS

1 mark for labelling R and S.

1 mark for showing correct electronic distribution

- (f) The metallic bond in Q is stronger than that of P  $\sqrt{\frac{1}{2}}$  because it has more valence electron  $\sqrt{\frac{1}{2}}$
- (g) Add water in the mixture and stir  $\sqrt{.}$  Shake the mixture well  $\sqrt{.}$  Filter the mixture  $\sqrt{.}$  Dry the mixture to obtain lead (II) sulphate  $\sqrt{.}$  Evaporate or crystallize the filtrate to obtain the sulphate of T  $\sqrt{.}$
- 2. (a) L hot compressed air  $\sqrt{\frac{1}{2}}$  M Super heated water  $\sqrt{\frac{1}{2}}$  N Molten sulphur  $\sqrt{\frac{1}{2}}$ 
  - (b) L Forces out the molten sulphur  $\sqrt{\frac{1}{2}}$  M Melts the sulphur  $\sqrt{\frac{1}{2}}$

- (c) (i) A Monoclinic sulphur  $\sqrt{\frac{1}{2}}$ B – Rhombic sulphur  $\sqrt{\frac{1}{2}}$ 
  - (ii) Allotropes are different forms of the same element without change of state  $\sqrt{1}$ .
- (d) Used in the manufacture of sulphuric (VI) acid.  $\sqrt{1}$ 
  - Used as a fungicide
  - Used in manufacture of a bleaching agent used in paper industry to bleach wood pulp
  - Used in vulcanization of rubber.
  - Used in manufacture of dyes and fire works.
- (e) (i) Vanadium (V) oxide √ - Platinum
  - (ii) I) Yield increases √½; more molecules are forced to combine together hence √1increasing the yield // producing more sulphur (VI) oxide
     II) Yield decreases √½; the extra heat decomposes the sulphur (VI) oxide √1 equilibrium shifts to the left // backward reaction is favoured.
  - (iii) Sulphur (VI) oxide is <u>dissolved in concentrated</u>  $\sqrt{1}$  H<sub>2</sub>SO<sub>4</sub> to form oleum. then oleum is <u>diluted with water</u> to make sulphuric (VI) acid  $\sqrt[4]{2}$

$$SO_{3(s)} + H_2SO_{4(l)} \longrightarrow H_2S_2O_{7(l)} \sqrt{\frac{1}{2}}$$
 $H_2S_2O_{7(l)} + H_2O_{(l)} \longrightarrow 2H_2SO_{4(aq)} \sqrt{\frac{1}{2}}$ 

(f) - Causes acid rain

Rej: Acidic rain

- It is poisonous // toxic // harmful Rej: It causes lung cancer
- (g) Mole ratio  $H_2S_2O_7:SO_3$  is 1:1No. of moles of  $SO_3=\frac{105000}{80}=13125$  moles  $\sqrt{}$

Mass of oleum

$$13125 \times 178 = 2336250g \quad \sqrt{\frac{1}{2}}$$
$$= 2336.25kg$$

- 3. (a) Hydrogen  $\sqrt{1}$ 
  - (b)  $3Fe_{(s)} + 4H_2O_{(g)}$  Fe<sub>3</sub>O<sub>4(g)</sub> +  $4H_{2(g)}$ State Symbols missing (  $\frac{1}{2}$  mark ) Unbalanced 0 mark
  - (c) Introduce a burning wooden splint  $\sqrt{\frac{1}{2}}$  into a test tube. If it turns with a pop sound, the gas  $\sqrt{\frac{1}{2}}$  is hydrogen.
  - (d) It is insoluble or slightly soluble in water  $\sqrt{1}$  (1 mark)

- (e) Manufacture of hydrochloric acid  $\sqrt{1}$ 
  - Manufacture of ammonia  $\sqrt{1}$
  - Hardening of oils to margarine (hydrogenation)
  - Oxy-hydrogen flame for cutting and welding steel.

Any two (2 marks)

- (f) (i) Zinc (II) carbonate  $\sqrt{\phantom{a}}$  (1 mark)
  - (ii) Potassium chloride  $\sqrt{\phantom{a}}$  (1 mark)
  - (iii) I) Solid changed to yellow when hot and turned white when cold II)  $Zn CO_{3(s)} \longrightarrow ZnO_{(s)} + CO_{2(g)} \sqrt{1}$
- 4. (b)  $1000 \text{cm}^3 \text{ contain 2 moles}$   $50 \text{cm}^3 \text{ contain} = \frac{2 \text{ mol x } 50 \text{cm}^3}{1000 \text{cm}^3} \sqrt{\frac{1}{2}} = 0.1 \text{ moles } \sqrt{\frac{1}{2}}$ 
  - (c)  $100 \text{cm}^3$  (1 mark)
  - (d) NaOH<sub>(aq)</sub> + HCl<sub>(aq)</sub> NaCl<sub>(aq)</sub> + H<sub>2</sub>O<sub>(1)</sub>  $\sqrt{\frac{1}{2}}$  Mole ratio NaOH : HCl 1000cm<sup>3</sup> contain 0.1 moles 1000cm<sup>3</sup> contain  $0.1 \text{ mol } \times 1000 \text{cm}^3$   $\sqrt{1} = 1.0 \text{ moles}$   $1000 \text{cm}^3$

Molarity = 
$$1.0 \text{M} \sqrt{\frac{1}{2}}$$
 (2 marks)

(e) 0.1 moles liberate 5.6kJ 1 mole liberates  $\frac{5.6 \text{ kJ}}{0.1}$   $\sqrt{1 \frac{1}{2}}$  $\frac{5.6 \text{ kJ}}{0.1}$  = 56.0

$$\Delta H = -56 \text{ kJmol}^{-1} \sqrt{\frac{1}{2}}$$
 (2 marks)



(2 marks)

Labelling of axes (½ mark)

# A GRAPH OF HEAT CHANGE AGAINST VOLUME OF HCI

7 6 5 4 3 2 1 20 40 60 80 100 120 140 Volume HCl (cm<sup>3</sup>) Heat change

7 points 1 mark
6 points ½ mark
Plot 1 mark
Curve 1 mark
Scale 1 mark

Max 3 marks

5. (a) (i) Addition of calcium chloride to lower temperature (1 mark)

(ii) 
$$Na^{+}_{(l)} + e^{-} \longrightarrow Na_{(l)}$$
  
 $2Cl^{-}_{(l)} + 2e^{-} \longrightarrow Cl_{2(g)}$  (2 marks)

- (iii) Cl<sub>2(g)</sub> Manufacture of hydrochloric acid / PVC pipes / disinfectant. (1 mark)
- (b) (i) Bauxite (1 mark)
  - (ii) Ore is dissolved in hot concentrated sodium hydroxide and then filtered  $\sqrt{1}$   $2NaOH_{(aq)} + Al_2O_{3(s)} + 3H_2O_{(l)} \longrightarrow 2NaAl(OH)_{4(aq)}$

Pure Al(OH)<sub>3</sub> is precipitated by bubbling carbon (IV) oxide  $2NaAl(OH)_4 + CO_2 \longrightarrow Na_2CO_3 + 2Al(OH)_3 \sqrt{1}$ 

The precipitate is then heated strongly  $2Al(OH)_{3(s)} \longrightarrow Al_2O_3 + 3H_2O_{(g)} \sqrt{1}$  (3 marks)

- (iii) The pure ore is dissolved in molten cryolite at  $900^{0}$ C. (1 mark)
- (iv) It is constantly corroded by the discharged oxygen at the high temperatures decreasing its mass. (1 mark)
- 6. (a) Hydrocarbons are organic compounds that consists of carbon and hydrogen atoms only.

Name: But-1-ene

- (c) (i) Esterification // condensation
  - (ii) Chloroethane
- (d) CH<sub>3</sub>ONa
- (e) Reagent; Hydrogen gas √½

# **Conditions**

Temperatures  $150^{\circ}\text{C} - 250^{\circ}\text{C} \sqrt{\frac{1}{2}}$ 

Pressure of 200 - 250 atmospheres  $\sqrt{\frac{1}{2}}$ 

Catalyst : Nickel √½

Reject conditions if reagent is not named // given

- (f) (i) Polymerisation
  - (ii) Pollute the environment
    - Produce poisonous gases when burnt

- 7. (a) Is a solution that can not dissolve any more solute at a specific temperature.
  - (b) (i) Marking points
    - Labelling of the two axes  $\sqrt{1}$
    - All points correctly plotted  $\sqrt{1}$

Five points correctly plotted  $\sqrt{\frac{1}{2}}$ 

4 and below points plotted – award zero

- Curve covering at least 3/4 of grid
- Penalise fully if curve is extended to zero.
- If axes are inverted award max 2 marks
- (ii) I) Value read from the graph  $\pm 1$ 
  - Units must be correct, i.e, g/100g water
  - \* If units are missing peanalise ½ mark
  - \* If value not shown how it was obtained from the graph award zero.
  - II) Mass dissolved = value read from graph  $\pm 1$ .
    - $\therefore$  mass undissolved = 80 value read from the graph
    - Units should be in g; if missing penalize ½ mark
- (c) R.M.M of X = 101

No. of mol of X in 100g water =  $^{25}/_{101} = 0.2475$  mol

No. of mol of X in 1000g water =  $0.2475 \times 1000$ 

$$= 2.475M$$

Or

$$\frac{25}{101}$$
x  $\frac{1000}{100}$  = 2.475M

## A GRAPH OF SOLUBILITY OF SALT x AGAINST TEMPERATURE

96 84 72 60 48 36 24 12 10 20 30 40 50 60

SOLUBILITY g/100g water TEMP (°C)

Scale - 1 mark
Curve - 1 mark
Plot - 1 mark
6 point - 1 mark
5 points - ½ mark

Max (3 marks)

| Name | Index No              |
|------|-----------------------|
|      | Candidate's signature |
|      | Date                  |

233/3 CHEMISTRY PAPER 3 PRACTICAL JULY 2011 2 ½ HRS

KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 3 2 ½ HRS

## **INSTRUCTION TO CANDIDATES**

- Write your name and index number in the spaces provided above.
- Answer ALL the questions in the spaces provided in the question paper.
- You are not allowed to start working with apparatus for 15 minutes of the 2½ hours allowed for the paper. This time is to enable you to read the question paper and make sure you have all the apparatus and chemicals you need.
- All working must be clearly shown.
- Mathematical tables and electronic calculators may be used.
- All working must be clearly shown

## FOR EXAMINER'S USE ONLY

| QUESTIONS  | MAXIMUM SCORE | CANDIDATE'S SCORE |
|------------|---------------|-------------------|
| 1          | 22            |                   |
| 2          | 8             |                   |
| 3          | 10            |                   |
| TOTAL CORE | 40            |                   |

- 1. You are provided with;
  - Magnesium ribbon, solid E
  - 0.7M sodium hydroxide, solution F.
  - Sulphuric (VI) acid, solution G.

You are required to determine the concentration of sulphuric (VI) acid in moles per litre.

## Procedure A

- Using a burette, place 50.0cm<sup>3</sup> of sulphuric (VI) acid, solution G in a 100ml beaker.
- Stir the solution gently with a thermometer and measure its temperature after every half-minute.
- Record the values in table 1 below.
- Fold solid E and place it into solution G at exactly 1 ½ minutes
- Stir the mixture gently with the thermometer and measure the temperature of the mixture after every half minute and record the values in table 1.

(Retain the mixture for use in procedure B)

Table 1

| Time (min)                   | 0 | 1/2 | 1 | 1 1/2    | 2 | 2 1/2 | 3 | 3 1/4 | 4 | 4 1/2 | 5 | 5 ½ | 6 |
|------------------------------|---|-----|---|----------|---|-------|---|-------|---|-------|---|-----|---|
| Temperature( <sup>0</sup> C) |   |     |   | $\times$ |   |       |   |       |   |       |   |     |   |
|                              |   |     |   |          |   |       |   |       |   |       |   |     |   |

(4 marks)

(a) (i) Plot a graph of temperature (y-axis) against time.

(3 marks)

(ii) Using the graph determine the highest change in temperature,  $\Delta T$ .

(1 mark)

(iii) Calculate the heat change for the reaction given that the specific heat capacity of the mixture is  $4.2kJg^{-1}k^{-1}$  and that the density of the resulting solution is  $1g/cm^3$ . (2 marks)

|        | (iv) Given that the molar heat of reaction<br>number of moles of sulphuric (VI) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                                         |                                 | late the (2 marks) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|--------------------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                         |                                 |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                         |                                 |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                         |                                 |                    |
| Proced | dure B Rinse the burette thoroughly and fill it was Transfer all the contents of the 100ml bear distilled water to make up to the mark. It Using a pipette and a pipette filler, place drops of phenolphthalein indicator and the Record your results in table 2 below.  Repeat titration two more times and compared to the property of the p | aker used in pr<br>Label this solut<br>25.0cm <sup>3</sup> of sol<br>trate against so | ocedure A in<br>ion H.<br>lution H into | to a 250ml volu a 250ml conical |                    |
| Table  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                                         |                                 |                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                     | II                                      | III                             |                    |
|        | Final burette reading (cm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                         |                                 |                    |
|        | Initial burette reading (cm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                         |                                 |                    |
|        | Titre (cm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                         |                                 |                    |
| Calant | lata than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | l                                       |                                 | (3 marks)          |
| Calcul | late the; (a) Average volume of solution F used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                                         |                                 | ( 1 mark )         |
|        | <ul><li>(b) The number of moles of:</li><li>(i) Solution F used.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                         |                                 | ( 1 mark )         |

|    |               | (ii) Sulphuric (VI) acid in 25.0cm                      | n <sup>3</sup> of solution H.                                                                                                    | (1 mark)     |
|----|---------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|
|    |               | (iii) Sulphuric (VI) acid in 250cm                      | n <sup>3</sup> of solution H.                                                                                                    | (1 mark)     |
|    | (c)           | (i) The total number of moles of s                      | sulphuric (VI) acid in 50cm <sup>3</sup> of solution G.                                                                          | ( 1 ½ marks) |
|    |               | (ii) The concentration of the original moles per litre. | inal sulphuric (VI) acid, solution G in                                                                                          | ( 1 ½ marks) |
| 2. | and ir (a) Pl | nferences in the spaces provided. D                     | at the tests below and record your observations divide solid K into two halves.  In dry test-tube. Heat it gently then strongly. |              |
|    |               | (1 mark                                                 | 5.                                                                                                                               | ( 1 mark )   |

| cess.               |
|---------------------|
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
| ( 1 mark )          |
| sulphuric (VI) acid |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
| (1 morts)           |
| (1 mark)            |
|                     |
|                     |
| ( 1 mark )          |
| (1 mark)            |
|                     |

3.

| (b) To 1cm <sup>3</sup> of liquid J in a test-tube, add to Observations | three drops of bromine water.  Inferences              |         |
|-------------------------------------------------------------------------|--------------------------------------------------------|---------|
| Observations                                                            | interences                                             |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
| (1 mark                                                                 |                                                        | (1 mark |
| Warm the mixture gently and allow it                                    |                                                        |         |
| Observations                                                            | Inferences                                             |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
| (1 mark                                                                 |                                                        | (1 mark |
|                                                                         |                                                        |         |
| (d) To 2cm <sup>3</sup> of liquid J in a test-tube, add a               | a small solid sodium hydrogen carbonate                |         |
| Observations                                                            | Inferences                                             |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
| (1 mark                                                                 |                                                        | (1 mark |
|                                                                         |                                                        |         |
| (e) To 2cm <sup>3</sup> of liquid J in a test-tube, add 2               | 2cm <sup>3</sup> of ethanol followed by a few drops of |         |
| concentrated sulphuric (VI) acid.                                       | 1                                                      |         |
| Observations                                                            | Inferences                                             |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
|                                                                         |                                                        |         |
| (1 mark                                                                 |                                                        | (1 mark |
| (1 11111111                                                             |                                                        | ( 1 mm  |

233/3 CHEMISTRY PAPER 3 PRACTICAL JULY 2011

# KIBWEZI SECONDARY SCHOOLS EXAMINATION CHEMISTRY PAPER 3

#### MARKING SCHEME

#### 1. Procedure A

#### Marks distribution

- Complete table (1 mark)

#### **Penalties**

- Penalise ½ mark once for any space not filled
- At least 6 points should be given.
- Otherwise penalize fully.
- Penalise ½ mark once for unrealistic temperature reading (less than 10°C or greater than 40°C) as initial temperature.
- If temperature readings are all constant from t = 0 min to t = 5 mins, penalize  $\frac{1}{2}$  mark.
- Use of decimals 1 mark

## Conditions

- Accept temperature readings only if consistently given as either whole number or to 1 decimal place

<u>Note</u>: The decimal place has to be either 0 or 5.

## Accuracy (1 mark)

- Compare the teacher's value to student's temperature reading. Should be within  $\pm 1^{\circ}$ C.

#### Trends (1 mark)

- If temperature reading from minute 2 rises to a maximum.

# Graph

#### Marks distribution

- Labelling of axes (1 mark)

#### **Penalties**

- Penalise fully for inverted axes
- Penalise fully if wrong units are used.

# <u>Scale</u> (conditions)

- Area covered by graph should be at least  $\frac{2}{3}$  of the grid provided.
- Scale interval must be consistent.

#### **Plotting**

- If 10 to 12 points are correctly plotted. (1 mark)
- If 7 to 9 points correctly plotted (1 mark)
- If less than 7 points correctly plotted (0 mark)

(ii) Maximum change in  $\Delta T$  (1 mark)

Conditions

- Accept if the  $\Delta T$  value is shown how it was obtained from the graph.

(iii) 
$$\Delta H = 50 \times 4.2 \times \text{ans}$$
 (ii)  $\sqrt{1} = \text{correct answer } \sqrt{1}$   
Or
$$\Delta H = \underline{50 \times 4.2 \times \text{ans}} \sqrt{1}$$
 (ii) = correct answer  $\sqrt{1}$ 

## Note:

- Accept the correct transfer of  $\Delta T$  even if rejected at (ii) above.
- Units may not be shown but if shown must be correct (kJmol<sup>-1</sup>)

(iv) Answer (iii) 
$$\sqrt{1}$$
 = correct answer  $\sqrt{1}$ 

Or

Answer (iii)  $\sqrt{1}$  = correct answer  $\sqrt{1}$ 

323000

#### Note

- Accept answer given to at least 4 decimal places.

#### **Procedure B**

Marks distribution

- Complete table 1 mark
- Complete table with 3 consistent titrations.
- Only 2 titrations done (½ mark)
- Only 1 titration done (0 mark)

#### Penalties

- Wrong arithmetic.
- Inverted table
- Burette reading beyond 50cm<sup>3</sup>.
- Unrealistic titre values if below 1.0cm<sup>3</sup>.
- Use of decimals tied to the  $1^{st}$  and  $2^{nd}$  rows only. (1 mark)

#### Conditions

- Accept 1 or 2 decimal places consistently used.
- If 2 decimal places are used the 2<sup>nd</sup> decimal place must be a 0 or 5.

Accuracy  $\sqrt{1}$  (1 mark)

Compare candidates value with teacher's value.

## **Conditions:**

Values must be within  $\pm 0.1$ cm<sup>3</sup>.

Principles of averaging (1 mark)

Values averaged must be shown and must be within  $\pm 0.2$  of each other

#### Note

- If 3 values are possible and only 2 are averaged (0 mark)
- If 3 titrations are done and are inconsistent and averaged (0 mark)

Final answer. Tied to correct average titre. (1 mark)

(b) (i) Moles of solution F used = 
$$\frac{0.7 \text{ x titre value}}{1000 \text{ } \sqrt{1}}$$
 = correct ans.  $\sqrt{1}$ 

(ii) Mole ratio of H<sub>2</sub>SO<sub>4</sub>: NaOH = 1 : 
$$2\sqrt{\frac{1}{2}}$$
  
 $\therefore$  moles of H<sub>2</sub>SO<sub>4</sub> = Ans (i) x  $\frac{1}{2}\sqrt{\frac{1}{2}}$  = correct ans  $\sqrt{\frac{1}{2}}$ 

(iii) Moles of 
$$H_2SO_4$$
 in  $250cm^3$  of solution  $H$ 

$$= \underbrace{ans (ii) \times 250 \sqrt{}}_{25} = correct \ ans \sqrt{\frac{1}{2}}$$

Or

Ans (ii) x 10 =correct ans

- (c) (i) answer A
  - (ii) Ans c (i) x 1000 = correct ans  $\frac{c}{50}$

| W<br>A | O Colourless liquid condenses on cooler parts of the test tube Thite residue  Thite residue  The proof of the test tube  The proof of the test tube  The proof of the test tube  The proof of the test tube | Hydrated salt / water of crystallization (1 mark)                                                                                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b     | (i) White precipitate ½ mark Insoluble in excess √½ mark                                                                                                                                                    | $Ca^{2+} \text{ or } Mg^{2+} \text{ likely to be present} $ $(1 \text{ mark })$ $\underline{Note}$ $Ignore \text{ mentioning } Ba^{2+}$ $Accept \text{ mention of } Al^{3+}, Pb^{2+} \text{ or } Zn^{2+} \text{ as absent for } 1 \text{ mark}$ |
|        | <ul> <li>(ii) No white precipitate is formed √1         <u>Reject</u>         No observable change         No precipitate formed     </li> </ul>                                                            | Presence of Mg <sup>2+</sup> 1 mark <u>Note</u> Accept absence of Ca <sup>2+</sup> for ½ mark                                                                                                                                                   |
|        | (iii) White precipitate √ dissolves on boiling √ 1 mark <u>Reject</u> Dissolve in excess                                                                                                                    | Cl <sup>-</sup> present 1 mark Tied to dissolving on boiling penalize fully for any contradictory ion.                                                                                                                                          |
|        | 9 marks                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |

3.

| (a) Liquids are miscible / no separation / no separate layers.       Polar compound / polar organic compounds         Accept: Dissolves in water / forms a solution Reject: No observable change / no change (1 mark)       (1 mark)         (b) Colour of bromine water remain / no decoloirization.       Absence of H H         - C = C - Saturated compound present - Alkene / alkyne absent - Reject: C = C / C = C       (1 mark)         (c) Orange colour persist / remain the same √       Absence of R - OH √ (1 mark)         Reject: Yellow colour persists Accept: √Orange colour of the dichromate does not turn / change to green for √ (1 mark)       (1 mark)         (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.       Presence of - COOH / H⁺ / H₃O⁺ Accept: acidic compound (1 mark)         - A sweet smell produced √       - Presence of an ester         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R         O II R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.                                                                          |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Accept: Dissolves in water / forms a solution Reject: No observable change / no change (1 mark)  (b) Colour of bromine water remain / no decoloirization.  Absence of H H  - C = C or H  - Alkene / alkyne absent - Alkene / alkyne absent - Reject: Yellow colour persist / remain the same √  Reject: Yellow colour persists Accept: √ Orange colour of the dichromate does not turn / change to green for √ (1 mark)  (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.  Presence of - COOH / H + / H₃O + Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for  (1 mark)  - Presence of an ester  O  Reject: Orange colour of the dichromate does not turn / change to green for √ (1 mark)  - A sweet smell produced √  - Presence of an ester  O  Reject: Orange colour of the dichromate does not turn / change to green for √ (1 mark)  - Presence of an ester  O  Reject: Orange colour of the dichromate does not turn / change to green for √ (1 mark)  - Presence of an ester  O  Reject: No observable change / no change (1 mark)  Organic acid / carboxylic acid / acidic solution for translation of the dichromate does not turn / change to green for √ (1 mark)  - Presence of an ester  O  Reject: No conservable change / no change (1 mark)  - Presence of - COOH / H + / H₃O + Accept: acidic compound (1 mark)  - Presence of an ester  O  Reject: No conservable change / no change (1 mark)  - Presence of an ester  O  Reject: No conservable change / no change (1 mark)  - Presence of an ester  O  Reject: No conservable change / no change (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) Liquids are miscible / no separation / no separate                      | Polar compound / polar organic compounds  |
| Reject: No observable change / no change (1 mark)   Absence of H   H    -C = C -   Saturated compound present   - Alkene / alkyne absent   - Alkene / alk | layers.                                                                     |                                           |
| (b) Colour of bromine water remain / no decoloirization.  Absence of H H  - C = C or H  - C = C Saturated compound present - Alkene / alkyne absent - Reject: C = C / C = C  Absence of R - OH √ (1 mark)  Reject: Yellow colour persists Accept: √ Orange colour of the dichromate does not turn / change to green for √ (1 mark)  (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.  Presence of - COOH / H <sup>+</sup> / H <sub>3</sub> O <sup>+</sup> Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for  (1 mark)  - Presence of an ester  O  R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accept: Dissolves in water / forms a solution                               |                                           |
| decoloirization. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reject: No observable change / no change (1 mark)                           | (1 mark)                                  |
| decoloirization. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) Colour of bromine water remain / no                                     | Absence of H H                            |
| $ \begin{array}{c c} -C \equiv C -\\ -Saturated compound present\\ -Alkene / alkyne absent\\ -Reject: C = C / C \equiv C \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | decoloirization.                                                            | \ /                                       |
| $ \begin{array}{c c} -C \equiv C -\\ -Saturated compound present\\ -Alkene / alkyne absent\\ -Reject: C = C / C \equiv C \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | C = C or                                  |
| - Saturated compound present - Alkene / alkyne absent - Reject: C = C / C ≡ C  (c) Orange colour persist / remain the same √  Reject: Yellow colour persists Accept: √ Orange colour of the dichromate does not turn / change to green for √  (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Presence of an ester  O  R − OH √  (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | H ′ \H                                    |
| - Saturated compound present - Alkene / alkyne absent - Reject: C = C / C ≡ C  (c) Orange colour persist / remain the same √  Reject: Yellow colour persists Accept: √ Orange colour of the dichromate does not turn / change to green for √  (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Presence of an ester  O  R − OH √  (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.  Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for    Note: Penalize for any other contradictory functional group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | . – .                                     |
| - Alkene / alkyne absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                           |
| (c) Orange colour persist / remain the same √  Reject: Yellow colour persists  Accept: √ Orange colour of the dichromate does not turn / change to green for √ (1 mark)  (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.  Presence of − COOH / H+ / H₃O+  Accept: acidic compound (1 mark)  Organic acid / carboxylic acid / acidic solution for  (1 mark)  - A sweet smell produced √  Presence of an ester  O  R − C − O − R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                           |
| C   Orange colour persist / remain the same $\sqrt{}$   Absence of R - OH $\sqrt{}$ (1 mark )     Reject: Yellow colour persists   Accept: $\sqrt{}$ Orange colour of the dichromate does not turn / change to green for $\sqrt{}$ (1 mark )     (d) Effervescence occurs / bubbles formed / fizzing   Reject: hissing.   Presence of - COOH / H <sup>+</sup> / H <sub>3</sub> O <sup>+</sup>   Accept: acidic compound (1 mark)     - A sweet smell produced $\sqrt{}$   Organic acid / carboxylic acid / acidic solution for       R - C - O - R   O         R - C - O - R   O   O       R - C - O - R   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                           |
| Reject: Yellow colour persists<br>Accept: $$ Orange colour of the dichromate does not<br>turn / change to green for $$ (1 mark )Note: Penalize for any other contradictory functional<br>group.(d) Effervescence occurs / bubbles formed / fizzing<br>Reject: hissing.Presence of $-$ COOH / H $^+$ / H $_3$ O $^+$<br>Accept: acidic compound (1 mark)- A sweet smell produced $$ - Presence of an esterO<br>   <br>  R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | - Reject: C = C / C = C                   |
| Accept: $\sqrt{ \text{Orange colour of the dichromate does not turn / change to green for } $ (1 mark )       group.         (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.       Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)         Organic acid / carboxylic acid / acidic solution for the dichromate does not turn / change to green for $$ Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)         - A sweet smell produced $$ - Presence of an ester $$ O                  R − C − O − R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) Orange colour persist / remain the same $\vee$                          | Absence of $R - OH \lor (1 \text{ mark})$ |
| Accept: $\sqrt{ \text{Orange colour of the dichromate does not turn / change to green for } $ (1 mark )       group.         (d) Effervescence occurs / bubbles formed / fizzing Reject: hissing.       Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)         Organic acid / carboxylic acid / acidic solution for the dichromate does not turn / change to green for $$ Presence of − COOH / H+ / H₃O+ Accept: acidic compound (1 mark)         - A sweet smell produced $$ - Presence of an ester $$ O                  R − C − O − R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D. W. H.                                                                    |                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | group.                                    |
| Reject: hissing.   Accept: acidic compound (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | turn / change to green for $\sqrt{\frac{1 \text{ mark }}{1 \text{ mark }}}$ | D                                         |
| Organic acid / carboxylic acid / acidic solution for  (1 mark)  - A sweet smell produced √  - Presence of an ester  O  R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                           |
| - A sweet smell produced √  - Presence of an ester  O       R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reject: hissing.                                                            | * '                                       |
| - A sweet smell produced $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1                                                                          | ,                                         |
| O<br>  <br>  R - C - O - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | ,                                         |
| R-C-O-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - A sweet smell produced V                                                  | - Presence of an ester                    |
| R-C-O-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |                                           |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                           |
| - Presence of - C – OH in J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | R C O R                                   |
| - Presence of - C – OH in J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 0                                         |
| - Presence of - C – OH in J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | <b>/</b>                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | - Presence of - C – OH in J               |
| (1 mark) (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1 mark)                                                                    | (1 mark)                                  |