NANG	NEWNO
NAME	INDEX NO
233/1	
CHEMISTRY	
PAPER 1(THEORY)	
JULY/AUGUST 2009	
TIME:2 ½ HRS	

NANDI EAST DISTRICT JOINT EVALUATION TEST 2009

Kenya Certificate of secondary Education Chemistry Paper 1 Time 2 hrs

1. A certain carbonate, XC)₃ reacts with dilute hydrochloric acid according to the equation given below

$$XCO_{3(s)} + 2HCI_{(aq)} \rightarrow XCI_{2(aq)} + CO_{2(g)} + H_2O_{(I)}$$

If 1g of carbonate reacts completely with 20cm^3 of 1M hydrochloric, calculate the relative atomic mass of X.(C= 12.0,0=16.0 (3 marks)

- 2. Chlorine and iodine are elements in the same group in the periodic table. Chlorine gas $CI_{2(g)}$ is yellow while aqueous iodine, I_{2aq} is brown
 - (a) What observation would be made if chlorine gas is bubbled though aqueous sodium iodide? (1 ½ marks)

(b) Write the formula of the chloride of an element A, Whose atomic numbers is 5.(A is not the actual symbol of the element).(1 ½ marks)

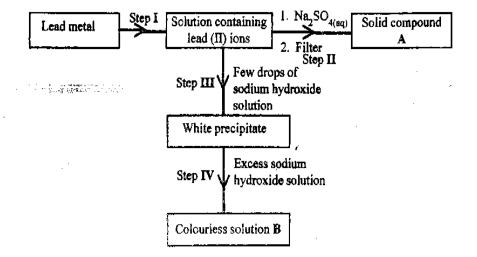
3. Dilute nitric acid reacts with copper according to the ionic equation

$$3Cu_{(S)} + 8H^+{}_{(aq)} + 2\;NO - {}_{3(aq)} \longrightarrow 3Cu^{2+}{}_{(aq)} + 2NO_{(g)} + H_2O_{(l)}$$

- (a) What is the oxidation number of nitrogen in
- (i) NO_{-3:} (1 mark)
- (i) NO: (1 mark)
- (b) With respect to nitrogen, explain whether the above reaction is an oxidation or reduction process
- 4. A compound C_4 $H_{10}O$ is oxidized by excess acidified potassium magnate (VII) to form another compound $C_4H_8O_2$. The same compound C_4 $H_{10}O$ reacts with sodium to produce hydrogen gas
 - (a) Draw the structural formula and name compound $C_4H_{10}O$ (2 marks)
 - (b) Write an equation for the reaction between sodfium and compound $C_4H_{10}O$
- 5. (a) 100g of radioactive $^{223}_{91}$ pa was reduced between to 12.5g after 81

days. Determine the half-life of Pa

- (b) Complete the nuclear equation below: $\underset{q_1}{\overset{223}{p_1}}pa + --- \xrightarrow{\overset{233}{q_1}}pa$
- 6. A given volume of oxygen gas diffused from a certain apparatus in 96seconds. Calculate the time taken by an equal volume of Sulphur (IV) oxide gas to diffuse under the same condition. (S = 32.0, 0 = 16.0) (3 marks)


7. At 25° C, NO₂ and N₂O₄ gases exists in equilibrium as shown in the equation below:

$$N_2O_{4(g)}$$
 \Longrightarrow $2NO_{2(g)}$; $\Delta H = +ve$

Pale- yellow Brown

State and explain the observation that would be made when:

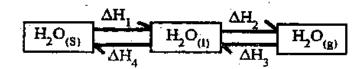
- (a) the temperature of the mixture at 25° C is increased to 60° C (1 ½ marks)
- (b) The volume of the gaseous mixture is reduced $(1 \frac{1}{2} \text{ marks})$
- 8. Study the flow chart and answer the questions that follow

- (a) Name
- (i) The reagent used in step 1

(1 mark)

(ii) Compound A

(1 mark)


- (b) Write an ionic equation for the reaction in step IV
- 9. (a) A few drops of freshly prepared iron (ii) sulphate solution were added to potassium nitrate solution in a test tube. Concentrated Sulphuric (VI) acid was then carefully added to the mixture. State the observation that was made (1 mark)

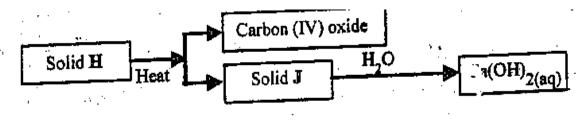
strongly heated		(1 mark)	
chloride, concentrat	repared by using the follow ed sulphuric (VI) acid and pot ole of each of the following in		
(i) Concentrated	sulphuric (VI) acid	(1 mark)	
(ii) Potassium m	nanganate (VII)	(1 mark)	
(b) Give one ind	ustrial use of chlorine	(1 mark)	
	the table below relates to elevate it and answer the questions Atomic Size 0.18 0.23	ement in the same group of the that follow	
C Which element has	0.15 the highest ionization energy?	Explain (2 marks)	

(b) Write an equation for the reaction that occurs when solid potassium nitrate is

12. (a) State one chemical compound responsible for temporary hardness in water

- (c) State and explain one disadvantage of using hard water in boilers (2 marks)
- 13. The scheme below shows the energy changes that are involved between ice, water and steam. Study it then answer the questions that follow

- (a) What name is given to the process represented by energy change ΔH_4 ? (1 mark)
- (b) What is the sign of ΔH_3 ? Give a reason


(2 marks)

- 14. When magnesium is burnt in air at high temperatures, magnesium nitride is formed as represented by the equation $2Mg_{(s)}+N_{2(g)}\longrightarrow Mg_3N_{2(S)}$
 - (a) Using dots (.) and crosses (x) draw the structure of magnesium nitride (Atomic numbers Mg = 12.0, N = 7.0) (2 marks)

- (b) Write an equation for the reaction of magnesium nitride and water (1 mark)
- 15. When a current of 1.5 amperes was passed through a cell containing M^{3+} ions on metal M for 15 minutes the mass of the cathode increased by 0.26g. (IF = 96500C).
 - (a) Calculate the quantity of electricity used

(b) Determine the relative atomic mass of metal M (1 mark)

16. Use the scheme below to answer the questions that follow

(a) Identify the solids

(1 mark)

(b) State one commercial use of solid J

(1 mark)

17. Starting with copper metal, describe how a solid sample of copper (II) carbonate can be prepared (3 marks)

18. In an experiment, 1g of magnesium powder was reacted with excess dilute sulphuric (IV) acid at 25°C. The time for the reaction to come to completion was recorded. The experiment was repeated at 40°C. In which experiment was the time taken shorter? Explain your answer. (3 marks)

	Excess hydrogen ga tube	s was passed over heated	copper(II) oxide in a con	nbustion		
(a) State the observation made in the combustion tube at the end o experiment (1 mark)						
(b) Write an equation for the reaction that took place in the combustion tube (1 mark)						
(c) Name one industrial use of hydrogen (1 mark)						
20. The table below show the tests carried out on a sample of water and the results obtained						
		Tests	Observations			
	Ι	Addition of sodium	White precipitate which	1		
		hydroxide solution drop wise until in excess	dissolves in excess.			
	II	Addition of excess aqueous ammonia	Colourless solution obtained			
	III	Addition of dilute hydrochloric acid followed barium chloride	White precipitate			
(a)	Identify the anion pr	resent in water	(1 mark)			
(b)	Write the equation f	or the reaction in III	(1 mark)			
(c)	Write the formula o	f the complex ion formed in	II (1 mark)			

21. (a) Name one Natural Fibre

(1 mark)

(b) Give one advantage of synthetic fibres over natural fibres (1 mark)

22. Complete the table below

(2 marks)

Species	Number of		
4	Neutrons	Electrons	Protons
He ²⁺			
2			

23. A compound whose structure is given below is found in a detergent

With reference to the structure explain how the detergent removes grease during washing (3 marks)

24. An element Y contains two isotopes $\begin{bmatrix} 16 \\ Y \end{bmatrix}$ and $\begin{bmatrix} 18 \\ Y \end{bmatrix}$ whose relative abundance is in the ratio 9: 1 $\begin{bmatrix} 8 \\ Y \end{bmatrix}$ 8 $\begin{bmatrix} 18 \\ Y \end{bmatrix}$ (2 marks)

- 25. An aqueous sodium sulphate solution was electrolyzed using platinum electrodes in a cell
 - (a) Name the products formed at the

Anode

(1 mark)

Cathode

(1 mark)

(b) How does the concentration of the electrolyte change during the electrolysis? (1 mark)

26. In an experiment to determine the solubility of solid Y in water at 30°C the following results were obtained. Mass of empty evaporating dish = 26.2g Mass of evaporating dish + saturated solution = 42,4g Mass of evaporating dish + dry solid = 30.4g Use the data to calculate the solubility Y at 30°C grams of Y per 100g water (3 marks)
27. The empirical formula of hydrocarbon is C_2 H_3 . the hydrocarbon has a relative molecular mass of 54 (H = 1.0, C = 12.0) (a) Determine the molecular formula of hydrocarbon (1½ marks)
(b) Draw the structural formula of the hydrocarbon (1 mark)
(c) To which homologous series does the hydrocarbon drawn in (b) above belong (½ mark)
28. A candle burns with a more luminous flame whereas tin lamp filled with ethanol produces a less luminous flame. Explain.

29. The lattice of calcium chloride is + 2237 KJ/mol and hydration energies of calcium ions and chloride gas are -1562 KJ/mol and -384KJ/mol respectively. Draw an energy level diagram for dissolving calcium chloride. (3 marks)