Name	
School	

Index No
Candidate's Signature
Date

233/3 CHEMISTRY PRACTICAL Paper 3 July/August 2010 2 ¹/₄ Hours

BUNGOMA JOINT EVALUATION TEST - 2010 Kenya Certificate of Secondary Education (K.C.S.E)

233/3 CHEMISTRY PRACTICAL

Instructions to candidates

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all chemicals and apparatus that you may need.
- Mathematical tables and electronic calculators may be used for calculations
- All working must be clearly shown where necessary
- Answer **all** the questions in the **spaces provided** in the question paper

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	22	
2	09	
3	09	
TOTAL		

FOR EXAMINER'S ONLY

This paper consists of 8 printed pages .Candidates should check the question paper to Ensure that all the pages are printed as indicated and no questions are missing

1. You are provided with:

- 1.60g of a dibasic acid H₂X labeled solid P
- Solution Q containing 1g of sodium hydroxide in 250cm³ of the solution.
- Phenolphthalein indicator

You are required to:-

- Prepare 250cm³ of solution P using solid P
- Determine the value of X in the formula (H_2X)

A PROCEDURE I

Place all of solid P in a 250cm³ beaker. Add about 100cm³ of distilled water to the beaker. Swirl until all the solid dissolves. Transfer the solution into a 250cm³ volumetric flask. Top up with distilled water to the mark and label it solution P.

Using a measuring cylinder transfer about 100cm³ of solution P into a 250cm³ beaker. Preserve the rest in the volumetric flask for procedure II.

Pipette 25cm³ of solution Q into a clean conical flask. Add 3 drops of phenolphthalein indicator to the 25cm³ solution in the conical flask. Fill the burette with solution P from the beaker. Titrate until the colour disappears. Repeat two more times and record your results in the table below.

Titre		1 st	2nd	3 rd
Final burette	e reading (cm ³)			
Initial burett	e reading (cm ³)			
Volume of s	olution P used (cm ³)			
				(4mks)
i)	Calculate the average	e volume of solution H	P used	(1mk)
ii) Calculate the Molarity of solution Q				
	(Na = 23, O = 16, H	= 1)		(2mks)
iii)	How many moles of	sodium hydroxide (N	aOH) were pipettee	d (1mk)
iv) How many moles of the acid, solution P reacted with 25cm ³ of solution Q (2mks			of solution Q (2mks)	
v)	How many Moles of	H ₂ X were present in	1.60g of solid P	(2mks)

vii) Determine the value of X in the formula H_2X (2mks)

B PROCEDURE II

You are provided with

- Acidified Potasium Manganate VII solution L.
- Solution P dibasic acid (H₂X)
- A stop watch
- Thermometer

You are required to determine how the rate of reaction of Potassium Manganate VII with the dibasic acid, solution P varies with change in temperature.

Using a 10ml measuring cylinder place 1 cm^3 portions of solution L (KMnO_{4(aq)}) into five test tubes. Using a clean 50cm³ measuring cylinder place 19 cm^3 of solution P into a boiling tube. Insert a thermometer in the solution P in the boiling tube and warm using the Bunsen burner flame, until the solution P attain a temperature of 40^oC. Place the boiling tube in a test tube rack, then add the first portion of solution L and at the same time start a stop watch. Record the time taken for the purple colour of the mixture to decolourise and record the time in table II below. Repeat the experiment by using 19 cm^3 of solution P at temperatures of 50° C, 60° C, 70° C and 80° C.

Complete the table II by computing 1/t sec⁻¹ row

Table II

a)

BGM 2010

(4mks)

Temperature of solution $P(^{0}C)$	40 ⁰ C	50 ⁰ C	60 ⁰ C	70 ⁰ C	80 ⁰ C
Time for colour to disappear (t) sec					
$^{1}/_{t}$ (Sec ⁻¹)					
					(4 mks)

b) Using the graph paper provided (Grid provided) Plot a graph of $1/t \sec^{-1}(y - axis)$ against temperature ${}^{0}C$ (3mks)

- c) From the graph determine the time taken for decolourization of the mixture if the temperature of the solution K was 65° C (1mk)
- d) How does the rate of reaction of potassium Manganate (VII) with dibasic acid
 (H₂X) vary with temperature (1mk)
- 2. You are provided with Solid E. Carry out the tests below and record your obserbation and inferences in the spaces provided.
 - a) To half of solid E, place in a clean dry test tube. Heat gently then strongly. Test any gases produced with blue and pink litmus papers.

b) Place all the remaining solid in a clean dry boiling tube. Add about 15cm³ of distilled water and shake thoroughly.

Observations	inferences	
(½mk)		(½ mk)

c) To all the solution in (b) above, add about 10cm³ of sodium sulphite solution provided then filter.

Observations	inferences
(1mk)	(1mk)

i) To about 2cm³ of the filtrate, add ammonia solution dropwise until in excess.

Observations		inferences	-
	(1mk)		(1mk)
ii)	To about 2cm ³ of the	e filtrate, add 3 drops of lead (II) nitrate solution, then warm to
	boiling		
Obset	rvations	inferences	
			-
	(½ mk)		(¹ / ₂ mk)
e prov	vided with solid F. Carr	ry out the tests below. Record ye	our observations and
ices in	the spaces provided.		

a) Place about half of solid F on a metallic spatula and burnt it using a non-luminous flame

Observations	inferences	
(1mk)		(1mk)

b) Place the remaining solid F in a clean boiling tube and add about 10cm³ of water and shake thoroughly.

i) To about 2cm³ of the solution F, put the universal indicator paper provided.

Observations	inferences
(¹ / ₂ mk)	(¹ / ₂ mk)

3.

Iv) To about 2cm³ of solution F, add three drops of acidified potassium manganate (VII) solution; then warm

Observations	inferences
(1mk)	(1mk)