| Name             | Index No/        |
|------------------|------------------|
| School           | Candidate's sign |
|                  | Date             |
| 233/1            |                  |
| CHEMISTRY        |                  |
| (THEORY)         |                  |
| PAPER 1          |                  |
| JULY/AUGUST 2009 |                  |
| 2 Hours          |                  |

## **MANGA DISTRICT JOINT EVALUATION TEST - 2009**

Kenya Certificate of Secondary Education (K.C.S.E)

233/1 CHEMISTRY (THEORY) PAPER 1 JULY/AUGUST 2009 2 Hours

## **INSTRUCTIONS**

- 1. Write your name and index number in the spaces provided.
- 2. Sign and write the date of examination in the spaces provided.
- 3. Answer ALL questions in the spaces provided
- 4. Mathematical tables and electronic calculators nay be used.
- 5. All working MUST be shown clearly where necessary.

## FOR EXAMINERS USE ONLY

| questions | Maximum | Candidate's |
|-----------|---------|-------------|
|           | score   | score       |
| 1-28      | 80      |             |
|           |         |             |

This paper consists of 12 printed pages. Candidates should check the questions to ensure that all pages are printed as indicated and no question(s) are missing

| 1. | Name the particles responsible for the electrical conductivity of: |               |                                                                         | y of:  |
|----|--------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|--------|
|    | (a)                                                                | (a) Graphite. |                                                                         | (1mk)  |
|    |                                                                    |               |                                                                         |        |
|    | (b)                                                                | _             | nesium Sulphate solution                                                | (1mk)  |
| 2  |                                                                    | *****         |                                                                         |        |
| 2. | (a)<br>                                                            | wna           | is the meaning of PH?                                                   | (1mk)  |
|    | <br>(b)                                                            |               | te the following in terms of PH:                                        |        |
|    |                                                                    | (i)           | An acid                                                                 | (1mk)  |
|    | •••••                                                              | (ii)          | A base                                                                  | (1mk)  |
|    |                                                                    |               |                                                                         |        |
| 3. |                                                                    |               | D)Carbonate is reacted with dilute sulphuric(VI) d then stops. Explain. | (2mks) |
|    |                                                                    |               |                                                                         |        |
|    |                                                                    |               |                                                                         |        |
| 4. |                                                                    |               | form four placed a thermometer in molten nap                            |        |

4. A Student in form four placed a thermometer in molten naphthalene at 85°C and recorded the temperature and time until the naphthalene solidified. From the values obtained, the figure below was drawn.



| •••••    |                           | represents the change of sta  |                           |                                         |
|----------|---------------------------|-------------------------------|---------------------------|-----------------------------------------|
|          |                           |                               |                           | •••••                                   |
| (c) ]    | In terms of kinetic theor | y. Explain what happens to    | molecules along AB.       | (1                                      |
|          |                           |                               |                           |                                         |
| The tabl | e below shows informa     | tion about three solid substa | ances A, B and C. Study i | t and an                                |
| the ques | stion that follow.        |                               |                           | 1                                       |
|          | Solid                     | Cold water                    | Hot water                 | -                                       |
|          | A                         | Soluble                       | Soluble                   | <u> </u><br> -                          |
|          | В                         | Insoluble                     | Insoluble                 | <u> </u><br> -                          |
|          | С                         | Insoluble                     | Soluble                   | ]                                       |
|          | e how you will separate   | the three solids from a mix   | ture of the three.        | (3                                      |
| Describ  |                           |                               |                           |                                         |
| Describ  |                           |                               |                           | • • • • • • • • • • • • • • • • • • • • |
| Describ  |                           |                               |                           |                                         |
|          | is prepared in the labo   | oratory by adding concentrat  | ed sulphuric(VI)acid to a | compo                                   |
|          |                           | oratory by adding concentrat  |                           |                                         |
| A gas, C |                           | ssolves in water to form a so |                           |                                         |

|    | (b)                        | Draw a diagram to show how gas G can be collected.                                                                                                                                      | (1mk)                                   |
|----|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
| 7. |                            | cm <sup>3</sup> of 0.12M potassium hydroxide solution required 30.0cm <sup>3</sup> of                                                                                                   |                                         |
|    | (H <sub>2</sub> Y<br>Calcı | T) for complete neutralization. The acid contained 3.15g per 500c ulate:                                                                                                                | m <sup>3</sup> solution.                |
|    | (a)                        | The molarity of the acid solution                                                                                                                                                       | (1½mks)                                 |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    | (b)                        | The relative formula mass of the acid.                                                                                                                                                  | (1½mks)                                 |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |
| 8. |                            | g of ethanol (C <sub>2</sub> H <sub>5</sub> OH) were completely burnt in air. The heat evolution of water to rise from 22 <sup>o</sup> C to 87 <sup>o</sup> C. Calculate the molar heat |                                         |
|    |                            | , C=12, O=16, specific heat capacity of water = $4.2 \text{ kJkg}^{-1}\text{k}^{-1}$ ; De                                                                                               | ensity of water = $1 \text{gcm}^{-3}$ ) |
|    |                            |                                                                                                                                                                                         | (3mks)                                  |
|    |                            |                                                                                                                                                                                         |                                         |
|    |                            |                                                                                                                                                                                         |                                         |

- 9. Determine the oxidation number of
  - (a) Manganese in KMnO<sub>4</sub>

(1mk)

(b) Sulphur in Na<sub>2</sub>SO<sub>3</sub>

(1mk)

10. Study the set-up below and answer the questions that follow.



After sometimes, the cotton wools X, Y and Z changed colour in turn.

(a) What were the colour changes? (1mk)

(b) Which cotton wool changed colour first? (½ mk)

(c) Explain why the cotton wools did not change colour at the same time. (1 ½ mks)

.....

11. The following is a small section of polystyrene polymer. Study it and answer the questions that follow.



(a) Drarw the structure of the monomer unit of polystyrene.

- (b) Calculate the number of monomers used to form the polystyrene polymer of relative molecular mass of 18,096. (H=I=, C=12) (2mks)
- 12. Name the method of separation that can most suitably be used to separate the following mixtures.
- (a) Gasoline from petroleum (1mk)

  - (b) Benzoic acid and potassium carbonate (1mk)
  - (c) Oil from cashew nuts (1mk)
  - .....
- 13. An aqueous solution of ammonia was added drop wise to a solution of copper (II) Sulphate until in excess.
  - (a) State the observation made when:-
    - (i) A few drops of aqueous ammonia were added. (1mk)
  - .....
    - (ii) Excess aqueous ammonia was added. (1mk)

(1mk)

| (b)   | Write the formula of the complex ion responsible for the observation made | e in a(ii) above |
|-------|---------------------------------------------------------------------------|------------------|
|       |                                                                           | (1mk)            |
|       |                                                                           |                  |
| ••••• |                                                                           |                  |
| Study | y the flow chart below and answer the questions that follow.              |                  |
|       | NH <sub>3(aq)</sub> Heated Copper                                         |                  |
|       | Copper (II)Oxide  Liquid B                                                |                  |
| (a)   | State the observation made when ammonia gas is passed over heated copp    | er(II)oxide.     |
| ( )   |                                                                           | (1mk)            |
|       |                                                                           |                  |
| (b)   | Identify:                                                                 |                  |
|       | (i) Gas A                                                                 | (1mk)            |
|       |                                                                           |                  |
|       | (ii) Liquid B                                                             | (1mk)            |

15. Study the diagram below and answer the questions that follow.



14.

| (b)   | Write the chemical equation for the reaction which produces gas Z       | (1mk) |
|-------|-------------------------------------------------------------------------|-------|
|       |                                                                         |       |
| (c)   | State why the above experiment should be carried out in a fume chamber. | (1mk) |
|       |                                                                         |       |
| ••••• |                                                                         |       |

16. The diagram below shows the blast furnace for the extraction of iron. Study it and answer the question that follow.



| (a)<br> | Name any one ore from which iron can be extracted.                       | (1mk)   |
|---------|--------------------------------------------------------------------------|---------|
| (b)<br> | At which point R, S or T in the blast furnace is the temperature lowest? | ( ½ mk) |
| (c)     | Name any one of the main gases in gas mixture Q                          | ( ½ mk) |
| (d)     | What is the function of the hot air blast?                               | (1mk)   |
| •••••   |                                                                          | ••••••• |

17. An element E has relative atomic mass of 69.39. Given that the element has two isotopes of atomic masses 60.15 and 70.15, calculate the relative abundance of each of the isotopes. (3mks)

| 18.  | Briefly explain the following |                                          |                                                 |                                         |  |
|------|-------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------|--|
|      | (a)                           | Atomic radii of alkaline eartl           | h metals are smaller than those of the correspo | onding alkali                           |  |
|      |                               | metals in the same period.               |                                                 | (1mk)                                   |  |
|      |                               |                                          |                                                 |                                         |  |
|      | (b)                           | Melting point of halogens in             | crease down the group.                          | (1mk)                                   |  |
|      | (c)                           | Helium is a better gas for use           | e in weather research balloons than hydrogen.   |                                         |  |
| 19.  |                               | table below shows elements W,            | X, Y and Z and their atomic numbers. The let    | tters are not the                       |  |
| Elem | ent                           |                                          | Atomic number.                                  |                                         |  |
| W    |                               |                                          | 16                                              |                                         |  |
| X    |                               |                                          | 11                                              |                                         |  |
| Y    |                               |                                          | 18                                              |                                         |  |
| Z    |                               |                                          | 12                                              |                                         |  |
|      | (a)                           | Select an element which form (i) Anions. | ns                                              | (1mk)                                   |  |
|      |                               |                                          |                                                 |                                         |  |
|      | •••••                         | (ii) An insoluble carbona                | ıte.                                            | (1mk)                                   |  |
|      | •••••                         |                                          |                                                 |                                         |  |
|      | (b)                           | Which element has the large              | st atomic radius                                | (1mk)                                   |  |
|      |                               |                                          |                                                 | • • • • • • • • • • • • • • • • • • • • |  |
| 20.  | Nam                           | e the catalyst used in each of th        | e following processes.                          | • • • • • • • • • • • • • • • • • • • • |  |
|      | (a)                           | Hydrogenation.                           |                                                 | (1mk)                                   |  |
|      |                               |                                          |                                                 |                                         |  |
|      | (b)                           | Haber process.                           |                                                 | (1mk)                                   |  |
|      |                               |                                          |                                                 |                                         |  |

|     | (c)   | Contact process.                                                    | (1mk) |  |
|-----|-------|---------------------------------------------------------------------|-------|--|
|     | ••••• |                                                                     |       |  |
| 21. | (a)   | What is meant by "rate of reaction"?                                | (1mk) |  |
|     |       | State any two factors which affect the rate of a chemical reaction. |       |  |
|     |       |                                                                     |       |  |
|     |       |                                                                     |       |  |

22. The diagram below represents large scale manufacture of hydrochloric acid. Study it and answer the questions that follow.



| (a) | Identify:                               |                                                                 |        |  |
|-----|-----------------------------------------|-----------------------------------------------------------------|--------|--|
|     | (i)                                     | Gas A                                                           | (½ mk) |  |
|     | (ii)                                    | Gas B                                                           | (½ mk) |  |
| (b) |                                         | the chemical equation for the reaction between gas A and gas B. | (1mk)  |  |
|     |                                         |                                                                 |        |  |
| (c) | State t                                 | he role of the glass beads in the process.                      | (1mk)  |  |
|     | • • • • • • • • • • • • • • • • • • • • |                                                                 |        |  |

| 23. | (a)   | What are isomers? | (1mk) |
|-----|-------|-------------------|-------|
|     | ••••• |                   |       |
|     |       |                   |       |

(b) Draw and name the two branched isomers of pentane. (3mks)

24. The diagram below shows the behaviour of radiations from a radioactive material in an electric field. Study it and answer the questions that follow.



- (a) Identify the radiation P and R.
  - (i) P..... (1mk)
  - (ii) R.....(1mk)
- (b) Identify the charge on:-
  - (i) Plate A..... (½ mk)
  - (ii) Plate B..... (½ mk)
- 25. Sulphur is extracted from underground deposits by a process in which three concentric pipes are sunk down to the deposits as shown below.



|     | (a)<br>                                                                                                                                                                                                                    | Name the process represented above.                                                                                                                         | (1mk) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | (b)                                                                                                                                                                                                                        | What is passed down pipe J?                                                                                                                                 | (1mk) |
|     | (c)                                                                                                                                                                                                                        | Name the two allotropes of sulphur                                                                                                                          | (1mk) |
| 26. | (a)                                                                                                                                                                                                                        | What is hard water?                                                                                                                                         | (1mk) |
|     | (b)                                                                                                                                                                                                                        | Write the formulae of the two cations responsible for water hardness.                                                                                       | (1mk) |
|     | (c)                                                                                                                                                                                                                        | Given that the formula of an ion exchange resin which softens water is N one ionic equation to show how the cations in (b) above are removed dur softening. | •     |
| 27. | During electrolysis of copper(II)sulphate solution, a current of 4.0 Amperes was passed through the solution for Y minutes to deposit 2.39g of copper at the cathode. Determine the value of Y (Cu=64, 1F=96,500C). (2mks) |                                                                                                                                                             |       |
|     |                                                                                                                                                                                                                            |                                                                                                                                                             |       |

|     | • • • • • • • |                                                                          |       |
|-----|---------------|--------------------------------------------------------------------------|-------|
|     | •••••         |                                                                          |       |
|     |               |                                                                          |       |
|     |               |                                                                          |       |
| 28. | Briefl        | y state the meaning of the following terms in terms of oxidation number. |       |
|     | (a)           | Reduction                                                                | (1mk) |
|     |               |                                                                          |       |
|     |               |                                                                          |       |
|     | (b)           | Oxidation                                                                | (1mk) |
|     |               |                                                                          |       |
|     |               |                                                                          |       |