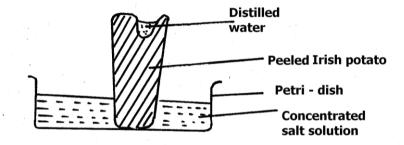
| Name   | Index No |
|--------|----------|
| School | Date     |
|        | Sign     |

231/2 BIOLOGY PAPER 2 JULY / AUGUST 2010 Time: 2 Hours

## **BUTERE DISTRICT JOINT EVALUATION TEST - 2010**

Kenya Certificate of Secondary Education (K.C.S.E)

BIOLOGY PAPER 2 JULY / AUGUST 2010 Time: 2 Hours


## **INSTRUCTIONS TO CANDIDATES**

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- This paper consists of **TWO** sections: **A** and **B**
- Answer **ALL** the questions in section A in the spaces provided.
- In section B answer question 6 (compulsory) and either question 7 or 8 in the spaces provided after question 8.

## FOR EXAMINERS USE ONLY

| SECTION | QUESTION | Max Score | Candidate Score |
|---------|----------|-----------|-----------------|
| A       | 1        | 8         |                 |
|         | 2        | 8         |                 |
|         | 3        | 8         |                 |
|         | 4        | 8         |                 |
|         | 5        | 8         |                 |
|         | 6        | 20        |                 |
| В       | 7        | 20        |                 |
|         | 8        | 20        |                 |
|         | TOTAL    | 80        |                 |

This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing 1. A group of students set up an experiment to investigate a certain physiological process. The set up was as shown in the diagram below.

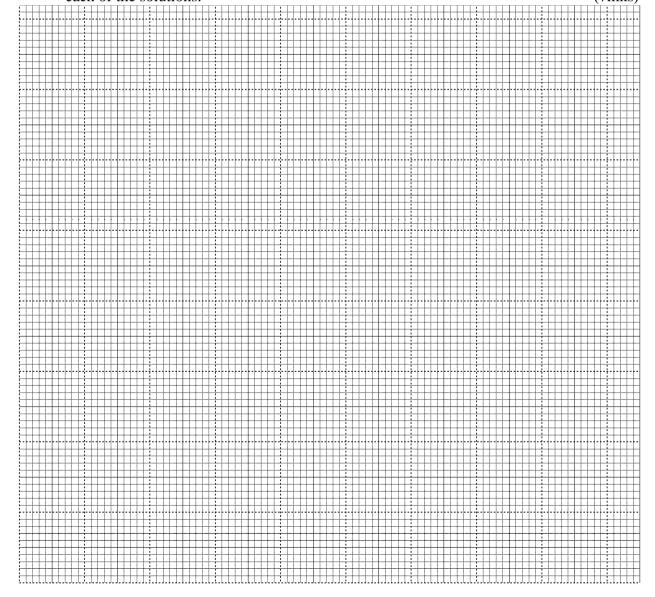


| a)       | What physiological process was being investigated?.                                 | (1mk)                                   |
|----------|-------------------------------------------------------------------------------------|-----------------------------------------|
| b)       | i) State two major observations that made after some time.                          | (2mks)                                  |
|          |                                                                                     |                                         |
| •••••    | ii) Account for the above observations in b(i) above.                               | (4mks)                                  |
|          |                                                                                     | • • • • • • • • • • • • • • • • • • • • |
| <br>c)   | State the significance of the biological process involved in the experiment.        | (1mk)                                   |
| <br>A sh | oot of a seedling exposed to light on one side bends towards the source of light as | it grows                                |
| a)       | Name the response exhibited by the shoot of the seedling.                           | (1mk)]                                  |
| b)       | Explain how the bending towards the sources of light occurs.                        | (4mks)                                  |
|          |                                                                                     |                                         |
| <br>c)   | Give three roles of tropism to plants.                                              | (3mks)                                  |
|          |                                                                                     |                                         |
|          |                                                                                     |                                         |

2.

|        | equation bellows shows a chemical reaction that takes place in green place itions                            | ants under certain    |
|--------|--------------------------------------------------------------------------------------------------------------|-----------------------|
|        | on (IV) Oxide + Water — Glucose + X                                                                          |                       |
| (a)    | Name the;                                                                                                    | (2mks)                |
| (i)    | Substance represent by X                                                                                     | ••••                  |
| (ii)   | Process represented by the equation                                                                          |                       |
|        |                                                                                                              |                       |
| b)     | Other than the reactancts, state two conditions necessary for this reac                                      | tion to occur. (2mks) |
| ••••   |                                                                                                              |                       |
| ••••   |                                                                                                              |                       |
| •••••  |                                                                                                              |                       |
| c)     | Name three types of cells in which the process occurs                                                        | (3mks)                |
|        |                                                                                                              |                       |
|        |                                                                                                              |                       |
|        |                                                                                                              |                       |
|        |                                                                                                              |                       |
|        |                                                                                                              | •••••                 |
| d)     | Define a compensation point .                                                                                |                       |
|        |                                                                                                              | ( 1mk)                |
| d)<br> | Define a compensation point .                                                                                | ( 1mk)                |
| d)<br> | Define a compensation point .                                                                                | ( 1mk)                |
| d)<br> | Define a compensation point .  diagram below represents a maize seedling                                     | ( 1mk)                |
| d) The | Define a compensation point .  diagram below represents a maize seedling                                     | ( 1mk)                |
| d) The | Define a compensation point .  diagram below represents a maize seedling  P  Name the parts labelled P and Q | ( 1mk)                |

| • • • • • • •   |                                         |                        |                   |                         |                 |
|-----------------|-----------------------------------------|------------------------|-------------------|-------------------------|-----------------|
| • • • • • •     |                                         |                        |                   |                         |                 |
|                 |                                         |                        |                   |                         |                 |
| d)              | What is the                             | role of air in germin  | nation of the abo | ove seedlings ?         | (2mks)          |
| • • • • • •     |                                         |                        |                   |                         |                 |
|                 |                                         |                        |                   |                         |                 |
|                 |                                         |                        |                   |                         |                 |
|                 |                                         |                        |                   |                         |                 |
| A stuc          | ly was carried                          | out to investigate the | he distribution   | of certain mammals      | in a game reser |
| th <u>ree</u> c | lifferent habit                         | ats. The results are   | shown in the ta   | ble below.              | -               |
| HA              | BITAT                                   | WILDEBEEST             | NUMBE<br>BUFFALO  | R IN HABITAT RHINOCERAS | LESSER KIN      |
| GR              | RASSLAND                                | -                      | 63                | 13                      | -               |
| W               | OODED                                   | 56                     | 87                | 50                      | 25              |
|                 | RASSLAND<br>REST                        | 10                     | _                 | 50                      | 75              |
| ru              |                                         | ove table suggest:     | -                 | 30                      | 13              |
|                 | habit                                   | ats.                   |                   |                         |                 |
|                 |                                         |                        |                   | es were found in the    | e wounded grass |
|                 |                                         |                        |                   |                         | wounded grass   |
|                 |                                         |                        |                   |                         | wounded grass   |
|                 |                                         |                        |                   |                         | wounded grass   |
|                 |                                         | sons why all the ma    | nmmalian speci    |                         | wounded grass   |
|                 | ii) Three rea                           | sons why all the ma    | ammalian speci    | es were found in the    | wounded grass   |
|                 | ii) Three rea                           | sons why all the ma    | nmmalian speci    | es were found in the    | wounded grass   |
|                 | ii) Three rea                           | sons why all the ma    | ammalian specie   | es were found in the    | wounded grass   |
|                 | ii) Three rea                           | sons why all the ma    | ammalian specie   | es were found in the    | wounded grass   |
|                 | b) From the                             | sons why all the ma    | ammalian specie   | es were found in the    | wounded grass   |
|                 | b) From the (i) Wildbees (ii) Lesser ko | data, deduce the fee   | ammalian specie   | es were found in the    | wounded grass   |
|                 | b) From the (i) Wildbees (ii) Lesser ko | sons why all the ma    | ammalian species  | es were found in the    | wounded grass   |
|                 | b) From the (i) Wildbees (ii) Lesser ko | sons why all the ma    | ammalian species  | es were found in the    | wounded grass   |
|                 | b) From the (i) Wildbees (ii) Lesser ko | sons why all the ma    | ammalian species  | es were found in the    | wounded grass   |


## SECTION B (40 MKS)

6. In an experiment, wondering jew plants with green leaves were kept in the dark for one hour. Strips of leaves measuring 5 mm by 10 mm from these plants were then cut and floated with the lower epidermis down on the experimental solutions in petridishes. The experimental solutions were sodium chloride and potassium chloride with equal concentration of 150mM. The Petri dishes were then placed in light and temperature kept at 20°C.

After 5 minutes, a leaf strip was removed from each experimental solution, quickly blotted dry and the percentage number of open stomata was found after counting under a microscope. This procedure was repeated with other strips from the same experimental solutions at intervals of 10 minutes. The results are shown in the table below.

| Time ( minute, floating on solution)  | 5 | 15 | 25 | 35 | 45 | 55 |
|---------------------------------------|---|----|----|----|----|----|
| % open stomata in Kcl Sol. ( 150 m M) | 0 | 0  | 20 | 76 | 82 | 86 |
| % Open stomata in NaCl Sol. (150 m M) | 0 | 0  | 6  | 22 | 42 | 45 |

a) On same axes, plot graph for percentage of open stomata against time for treatment in each of the solutions. (7mks)



|             | experiments.                                                                                                             | (1mk)                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|             |                                                                                                                          |                                         |
| c)          | Using the graph in ( a) above, give an explanation for the behaviour of guard cel                                        | <br>le durina                           |
| C)          | this experiment.                                                                                                         | (6mks)                                  |
|             | инь ехрегинени.                                                                                                          | (OIIIKS)                                |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
|             |                                                                                                                          |                                         |
| d)          | Predict what would happen if the experiment had been carried out in the dark.                                            | (1mk)                                   |
|             |                                                                                                                          |                                         |
| e)          | Explain how the stomata opens using the photosynthetic theory only.                                                      | (5mks)                                  |
| • • • • • • |                                                                                                                          |                                         |
| • • • • • • |                                                                                                                          |                                         |
|             |                                                                                                                          | • • • • • • • • • • • • • • • • • • • • |
| •••••       |                                                                                                                          |                                         |
| •••••       |                                                                                                                          | • • • • • • • • • • • •                 |
| •••••       |                                                                                                                          | • • • • • • • • • • • • • • • • • • • • |
| •••••       |                                                                                                                          |                                         |
| •••••       |                                                                                                                          | • • • • • • • • • • • •                 |
|             |                                                                                                                          | • • • • • • • • • • • •                 |
|             |                                                                                                                          |                                         |
| <br>How     | is the mammalian heart suited to its function.                                                                           | (20mks                                  |
|             | is the mammalian heart suited to its function. would the personalities below explain why ducks have webbed feet?         | (20mks                                  |
|             | is the mammalian heart suited to its function. would the personalities below explain why ducks have webbed feet?  Lamark | (20mks)                                 |

Why was it necessary to keep the plants in the dark for a period of time before the

b)